MITSUBISHI

type AD51H-BASIC (Program edit, Compile)

Programming Manual

MEISEC

Mitsubishi Programmable Controller

—~

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date *Manual Number Revision
Jun., 1995 | IB (NA) 66568-A First edition

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-A Series of General Purpose Programmable Control-
lers. Please read this manual carefully so that the equipment is used to its optimum. A copy of this
manual should be forwarded to the end User.

CONTENTS

1 GENERAL DESCRIPTION e e i e e 1-1
2 STARTING UP THE COMMUNICATION MODULE AND MODE CHANGE2-1-2-13

2.1 Using a PC/AT and a General- Purpose Terminal as the Console

(Display Terminal) and the Debugger 2-1
2.1.1 Preparations required to start up the communication module 2-2
2.1.2 Starting up the communicationmodule 2-5
22 Startup when Using Two General-Purpose Terminals as the Console and
the DEDUGOEr . . .« « v v e e e e e 2-8
2.2.1 Preparations required to start up the communication module 2-9
2.2.2 Starting up the communicationmodule 2-10
23 Communication Module Mode and Mode Change 2-11
3 COMMAND EXPLANATIONFORMAT 3-1
4 ONLINEPROGRAMMINGt it e e nontonenansnnsess 4-1-4-38
41 SystemCommands e 4-2
42 Copying/Deleting Data Froma Memory Card 4-3
4.2.1 Copying data from a memory card and writing that data to another
memory card (CCOPY command) e e 4-3
4.2.2 Formatting a memory card (CFORMAT command) 4-5
4.2.3 Displaying memory card format information (CFORMAT? command) 4 -8
43 Writing/Reading an Execution Program -10
4.3.1 Reading an execution program stored in a memory card/EEP-ROM using the com-
munication module (MLOAD command) ". 4-10
4.3.2 Writing an execution program (stored in the communication module) to a memory
card/EEP-ROM (MSAVE command) -13
44 Setting/Changing/Displaying Multitasking Descriptions 4 -16
4.4.1 Setting/Changing the multitask (SET command) 4-17
4.4.2 Displaying the multitask setting description (SET? command) 4-20
‘45 Changing the Communication Module Mode 4-23
4.5.1 Setting the communication module to the editing mode (1)
(STARTcommand)t it 4-23
452 Setting the communication module to the executlon/system mode
(GOcOmMMANd) . . . oot v e e 4-26
46 Stopping the Interpreter Operation in a Designated Task No. Area
(TKILLCommand)« ... 4-29
47 Displaying the MAIN MENU on the Console Screen (EXIT Command) 4 — 31
48 Confirming the System Command Input Procedure (HELP Command) 4 -33
49 Recovering an Unusable Area in the File Area of a Memory Card
(CRECOVER Command)ot vt e 4 -35.
410 Formatting (Logical Format) the File Area in a Memory Card
(FFORMAT Command)« v oot i it 4 - 37
5 MULTITASKDEBUGGING . .. vvvvvesueennnonnnnnennennns 5-1-5-48

51 Debug Commands 5-2

5.2 Controlling BASIC Program Operations e e e e e e e e e e 5-

3
5.2.1 Displaying the state of a designated program (TSTATUS command) 5-3
5.2.2 Starting the execution of a designated BASIC program (TRUN command) 5-5
5.2.3 Stopping the execution of a designated BASIC program
(TSTOPcommand) ittt ii it 5-7
5.2.4 Resuming a stopped BASIC program (TCONTINUE command) 5-10
5.2.5 Displaying the value of a designated variable in a designated BASIC
program (T?command) e e e e 5-12
5.2.6 Assigning a value to the designated value in the BASIC program
(TLETcommand)ttt 5-14
53 Reading/Writing from/to the InternalMemory 5-16
5.3.1 Displaying values in the buffer, common memory, and extension '
: register ED (MREADcommand) 5-17
5.3.2 Writing values to the buffer, common memory, or extension register
(ED) (MWRITEcommand) 5-20
5.3.3 Displaying general-purpose input (X)/output (Y), or extension relay
(EM) bitdata (B@command) 5-23
5.3.4 Writing bit data to general-purpose input signal (X) and extension
relay (EM) (B@command) 5-~26
5.3.5 Displaying word data in extension register (ED) (W@ command) 5-28
5.3.6 Writing word data to extension register (ED) (W@ command) 5-30
5.4 Confirming the State of Events, Message Ports, and Source' Numbers 5-33
5.4.1 Displaying event declaration states (valid/invalid)
(ZSTATUS command) e e e e e e e e e e e e e e e 5-33
5.4.2 Displaying the state of a message transmitted to a message
port shared by BASIC programs
(ZSTATUS command)ottt it i e e e e 5-35
5.4.3 Displaying the reserve/release states of source numbers used for
exclusive control (ZSTATUScommand)5-37
55 Changing the Communication Module Mode 5 -39
5.5.1 Setting the communication module to editing mode (2) ,
(STARTcommand) nnnnnnn 5-39
5.5.2 Setting the communication module to the system mode, execution :
mode (2), or debug mode (GOcommand) 5-42
5.6 Displaying the MAIN MENU on the Debugger (EXIT Command)5 —45
5.7 Confirming the Input Procedure for Debug Commands (HELP Command) 5 —47

CREATING BASIC PROGRAMS USING A GENERAL-PURPOSE EDITOR6-1-6-9

6.1 Difference between a General-Purpose Editor and the Software Package 6-1
6.2 Operation Flow when Creating a BASIC Program Using a General-Purpose
EBditOrt o e e e e e e e e e e e e e e e e e e 6-2
6.3 Items Required for Program Creation e e e e e e 6-—-2
6.4 Starting up the General-Purpose Editor 6-3
6.4.1 StatingupMIFES i e, ..6-3"
6.4.2 StatingupFINAL6=-3
6.4.3 StatingupEDLIN e e 6—-4
6.5 Notes on Using a General-Purpose Editor 6-5
6.6 Assigning Line Numbers with the Line Number Tool 6-6
6.6.1 Starting up the line numbertool 6—-6

6.6.2 Notes on the line numbertool e e e e e e e e e e 6-8

7 CREATING BASIC PROGRAMS USINGACOMPILER 7-1-7-20"

7.1 Differences between Compiler BASIC and Interpreter BASIC 7-1

7.2 Flow when Creating a Program Usinga Compiler 7-2
73 Necessary ltems for Compiling e ..7-3
7.4 Registering Assemblers and LinkerstoaHard Disk 7-3

7.5 Startingthe Compiler e i e e 7-4

7.6 Precautions when Compiling I e e e 7-6

7.7 Execution Using a Communication Module 7-7

78 lInstructionsand Functions e 7-8
7.8.1 Compilability of instructions'and functions 7-8

79 Startingthe Compiler 7-4
7.10 Precautions when Compiling o e 7-6
7.11 Execution Using a Communication Module 7-7
7.42 Instructions and Functions o e e e e e e 7-8

- 7.12.1 Compilability of instructions and functions 7-8
7.12.2 Different instruction and function specifications when using a compiler . .7 - 13

APPENDICES et e e et e e e e . .APP-1-APP-12 -

APPENDIX 1 ERROR MESSAGES WHEN USING THE LINE NUMBERTOOL APP -1

APPENDIX 2 ERROR MESSAGES WHEN COMPILING APP -2

Manuals ' _
The following manuals are also relevant to the AD51H communication

module. _
Related Manuals
Manual Name Manual Number
AD51H-S3 Intelligent Communication Module User's Manual o 1B-66401

Describes the system configuration when using the AD51H-S3 module, the
module specifications, part nomenclature and settings, functions, and
outside dimensions. (Packaged with the module)

A1SD51S Intelligent Communication Module User’s Manual (Hardware) 1B-66550
Describes the system configuration when using the A1SD51S module, the
module specifications, part nomenclature and settings, functions, and
outside dimensions. (Packaged with the module)

A1SD518S Intelligent Communication Module User’s Manual IB-66551
(Detailed information) :

Describes the system configuration when using the A1SD51S module, the
module specifications, part nomenclature and settings, functions, and
outside dimensions. (Sold separately)

AD51H-BASIC Programming Manual (Command) 1B-66567
Describes the AD51H programming method, commands, error codes, etc.
(Sold separately)

SWOIX-AD51HP Operating Manual 1B-66402
Describes how to use the software package for the IBM PC/AT. (Packaged
with the software package)

IBM is a regstered trademark of the International Business Macines Corporation.

1. GENERAL DESCRIPTION

1. GENERAL DESCRIPTION

This programming manual describes the system and debugging commands,
and compiling method, used with the AD51H communication module.

[0

()

3)

(4)

System/debugging commands

The following operations can be executed by inputting commands from
a console/debugger.

» BASIC program editing/debugging

» Writing BASIC programs to, and reading them from, memory
cards, FDs, and HDs. :

« BASIC program execution, stop, status display
« General-purpose I/0, reading/writing to internal devices
» Changing/reading multitasking settings

Creation of a BASIC program with a general-purpose editor (PC/AT
only)

BASIC programs can be created online by using one of the general-pur-
pose editors available on the market.
By using the line number too!, the program created with the general-

purpose editor can then be assigned line numbers.

Compilation of a BASIC program (PC/AT only)

BASIC programs created using interpreter BASIC can be compiled
using a compiler.

This gives an execution speed approximately 3 to 4 times faster than
interpreter BASIC.

Storage of the AD51H-S3 BASIC programs in a ROM (PC/AT only)

Created BASIC programs can be written to a ROM for use by an
AD51H-S3.

2. STARTING UP THE COMMUNICATION MODULE AND
MODE CHANGE

2. STARTING UP THE COMMUNICATION MODULE AND MODE CHANGE

This section gives how the communication module mode changes (when the
communication module starts up and after the comunication module starts

up).

This development is related to the online programming (see Section 4) and
the multitask debugging (see Section 5).

2.1 Using a PC/AT and a General-Purpose Terminal as the Console (Display Terminal) and
the Debugger

This section describes how to start up the communication module when a
PC/AT and a General-Purpose Terminal as the Console and the debugger.

Use either the PC/AT (connected to the communication module) or the
general-purpose terminal (connected to the communication module) as the
console, and the other as the debugger.

The switch settings (communication module mode setting switches SW1 to
SW5) determine which machines are used as the console and the debugger.
(See Section 2.1.1.)

(When a building-block type CPU module is used)

Intelligent
Power PC CPU s gl
supply module Coma:;tllt'::tlon
- module (ACPU)
CH.1 CH.3
RS-232C RS-422
cable cable
PC/AT
C
When a VT-382/ - b:trx/ee_er‘t_‘er
VT-220 is used RS-422 and
RS-232C

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHANGE MELSEC-A

2.1.1 Preparations required to start up the communication module

This shows the preparations required before the system starts up.
For details, see the operating manuals of the used devices.

(1) Communication module

(a) Setting the communication module
Set the switches used for operating the communication module .

On how to set the switches and how to use the switches, refer to
AD51H-S3 Intelligent communication module User’'s Manual and
A1SD51S Intelligent communication module User’'s Manual.

The following switches must be set according to the operation mode
when the communication module starts up and to how to use the
PC/AT and general-purpose terminal.

1) Mode setting switch 1

Set this switch to 0 to 4 according to the communication module
operation mode. ,

[0)/[1] : Used when executing a BASIC program that has
already been debugged after the communication module
starts up.

[2)/13] : Used when the multitask debugging (see Section 5) is
done after the communication module starts up.
(Can be set when the required BASIC program editing
and debugging, and multitask setting, have been
completed.

[4] : Used when editing a BASIC program, debugging a
single program, or operating in the system mode
(see Section 4) after the communication module starts
up.
2) Mode setting switch 2
Set the switches SW1 to SW5 so that they match the machine

used as the console, the machine used as the debugger, and the
used interfaces.

(Example)

Set the switches as show below when using a PC as the console,
a VT-382/VT-220 (connected to CH.1 of the communication mod-
ule) as the debugger:

No. 1 2 3 4 5
Setting OFF OFF OFF ON ON

\1(b) Installing memory cards (AD51H-S3 only)

To store execution programs and data, install necessary memory
cards in the AD51H-S3. (Up to two cards can be installed.)

To install the cards, connect a battery beforehand when necessary.

2. STARTING UP THE COMMUNICATION MODULE AND
~ MODE CHANGE | MELSEC-A

When a memory card with a write-protect tab is used, make sure
that the protect is released when a BASIC program is written after
the AD51H-S3 starts up or the memory card is newly used.

On how to install a memory card and how to connect a battery,refer
to AD51H-3 Intelligent communication module User’s Manual.

(c) Loading the communication module into a base unit

After setting the communication module and installing memory
cards, load the communication module into a slot of the base unit.

(2) PC/AT

(a) Installing the software
Install the following the software packages in the PC/AT.

e Operating system : MS-DOS (Ver 3.21 or after)
« AD51H-BASIC software package: (SW1IX-AD51HPE)
(b) Connecting the communication module to the PC/AT

Use a AC30R4 cable to connect the communication module RS-422
interface (CH.3) to the PC/AT serial interface.

Connect (COM 1) using an converter between the RS-422 and
RS-232C intertaces.

(3) General-purpose terminal

(a) When a VG-620 is used (*1)
1) Set the VG-620 USART mode as shown below:
« Baud rate : 9600 bps
 Data length : 8-bit
» Stop bit : 2-bit
o Parity : None
2) Connecting the communication module to the VG-620

Use an AC30R2 cable connect the'communication module RS-
232C interface (CH.1/CH.2) to the VG-620 RS-232C interface.

» When the general-purpose terminal is used as the console:
CH.1 '

s When the general-purpose terminal is used as the debugger:
CH.1or2

(Set the utilized interfaces so that they are consistent with the
switches SW1 to SW5 of the communication module mode set-
ting switch 2.)

*1: The manual of the VG-620 gives information about how to set and connect the VG-620.

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHANGE MELSEC-A

(b) When a VT-382/VT-220 is used (*1)
1) Set the VT-382 USART mode as shown below:
e Baud rate : 9600 bps
+ Data length : 8-bit
o Stop bit : 2-bit
"o Parity : None

2) Connecting the communication module to the VT-382/VT-220

Use an AC30R2 cable to connect the communication module
RS-232C interface (CH.1/CH.2) to the VT-382/VT-220 RS-232C
interface.

» When the VT382/VT-220 is used as the console: CH.1
e When the VT382/VT-220 is used as the debugger: CH.1 or 2

(Set the utilized interfaces so that they are consistent with the
switches SW1 to SW5 of the communication module mode set-
ting switch 2.)

*1: The manual of the VT-382/VT-220 gives information about how to set and connect the
VT-382/VT-220.

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHANGE MELSEC-A

2.1.2 Starting up the communication module

This section describes how to start up the communication module used with
a PC/AT and a general-purpose terminal.

(1) Starting up the PC/AT and the general-purpose terminal

The following gives how to start up the PC/AT and the general-purpose
terminal. ‘

(a) When starting up the PC/AT
1) Power ON
Turn ON the power to the PC/AT.
2) Starting the SW11X-AD51HPE installed in the PC/AT

input "D51HBASE", and press the [.J] key. Then, the SW1IX-
AD5S1HPE starts.

e The SW1IX-AD51HPE main menu appears on the screen of
the PC/AT.

[MENU]
1 : PROGRAMMING

]

POINT

The SW1IX-A51HPE Operating Manual gives details about how to
execute the following operations:

» Starting up the SW1IX-AD51HPE
« Setting the operating conditions for the PC/AT

 Setting the PC/AT to the online programming mode

2. STARTING UP THE COMMUNICATION MODULE AND
MODE CHANGE

~MELSEC-A

3) Changing the PC/AT mode (to the online programming mode)
i) When the PC/AT screen displays the SW1IX-AD51HPE main
menu, select the PROGRAMMING from the menu.
{ (MENU)
[PROGRAMMING]
1: ONLINE PROGRAMMING
/“'ﬂ
ii) Select ONLINE PROGRAMMING from the menu.
(b) When starting up the general-purpose terminal
Turn ON the power to the general-purpose terminal.
(2) Starting up the communication module

Turn ON the power to the communication module

According to the switches SW1 to SW5 of the communication module
mode setting switches 1 and 2, a prompt screen appears on the PC/AT
and the general-purpose terminal.

Communication
Module Mode
Setting Switch (1)

Communication
Module Mode

Display on the Console

Display on the Terminal
(used for debugging)

(Depends on the Mode Setting

Switch 2 Setting (SW1 to SW5))

Oort Execution mode
2 Displays the data output from a Displays the data output from a
BASIC program. BASIC program.
2o0r3 Debug mode
Displays the data output from a D>
BASIC program.
4 System mode
S> Displays the data output from a

BASIC program.

2. STARTING UP THE COMMUNICATION MODULE AND
MODE CHANGE MELSEC-A

—
(3) Staning the online programming operation/multitask debugging opera-
tion
(a) When the communication module is in the debug mode

1) Execute thé debugging operation in the multitasking system
according to Section 5.

2) When changing the communication module mode and continuing
the operation, see Section 2 3.

(b) When the communication module is in the system mode
1) Execute operations in the system mode according to Section 4.

2) To edit and debug a BASIC program, use the START command
to return the communication module to the editing mode (1), and
execute the operation.

The AD51H-BASIC Programming Manual gives how to edit and
debug a BASIC program.

~3) When changing the communication module mode and continuing
the operation, see Section 2.3.

2. STARTING UP THE COMMUNICATION MODULE AND
MODE CHACGE

22 Startup when Using Two General-Purpose Terminals as the Console and the Debugger

This section gives the communication module startup procedure when using
two general-purpose terminals as the console and the debugger.
When two general-purpose terminals are used:

¢ CH.1 corresponds to the console;
e CH.2 corresponds to the debugger.

(When a building-block type CPU module is used)

Intelligent
_Power PC CPU jont
supply | module °°m&":£:|c:t-on
module (ACPU)
CH.1 CH.2
RS-232C RS-232C
cable cable

When a VT-382/

When a VT-382/ VT-220 is used

VT-220 is used

(Used as the console) ' (Used as the debugger)

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHACGE

2.2.1 Preparations required to start up the communication module

This shows the preparations required before the system starts up.

For details, see the operating -manUa_IS of the used devices.

(1) Communication module

(a)

(b)

(c)

Setting the communication module
Set the switches used for operating the communication module.

On how to set the switches and how to use the switches,refer to
AD51H-S3 Intelligent communication module User's Manual and
A1SD51S Intelligent communication module User’'s Manual.

The following switches must be set according to the operation mode
when the communication module starts up and to how to use the
general-purpose terminals.

(Section 2.1.1 (1)-(a) gives general information.)
1) Mode setting switch 1
2) Mode setting switch 2

(Example)

Set the switches as show below when using two general-purpose
terminals VT-382/VT-220 (connected to CH.1 and 2 of the com-
munication module respectively) as the console and the debug-
ger:

" No. 1 2 3 4 5
Setting OFF ON ON OFF | ON

Installing memory cards (AD51H-S3 only)

To store execution programs and data, install necessary memory
cards in the AD51H-S3. (Up to two cards can be installed.)

To install the cards, connect a battery beforehand when necessary.

When a memory card with a write-protect tab is used, make sure that
the protect is released when a BASIC program is written after the
AD51H-S3 starts up or the memory card is newly used.

On how to install a memory card and how to connect a battery, refer
to AD51H-S3 Intelligent communication module User's Manual.

Loading the communication module into a base unit

After setting the communication module and installing memory
cards, load the communication module into a slot of the base unit.

| (2) General-purpose terminal

(a)

When a VG-620 is dsed

When a VG-620 is used as the console or debugger for the commu-
nication module, set and connect the VG-620 according to Section
2.1.1 (3)-(a). .

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHACGE

(b) When a VT-382/VT-220 is used

When a VT-382/VT-220 is used as the console or debugger for the
communication module, set and connect the VT-382/VT-220 accord-
ing to Section 2.1.1 (3)-(b).

2.2.2 Starting up the communication module

This section descrlbes how to start up the commumcatlon module used with
two general-purpose terminals.

M

(2)

Power ON

(a) Turn ON the power to the general-purpose terminals.
(b) Then, turn ON the power to the communication module.

Starting the online programming operation/multitask debugging opera-
tion

After the communication module starts up, according to the switches
SW1 to SW5 of the communication module mode setting switches 1 and
2, a prompt screen appears on the PC/AT and the general-purpose
terminal.

The contents of this screen are as indicated in Section 2.1.2 (2).

(a) When the communication module is in the debug mode

1) Execute the debugging operation in the multitasking system ac-
cording to Section 5.

2) When changing the communication module mode and continuing
the operation, see Section 2.3.

(b) When the communication module is in the system mode
1) Execute operations in the system mode according to Section 12.

2) To edit and debug a BASIC program, use the START command
to return the communication module to the editing mode (1), and
execute the operation.

The AD51H-BASIC Programming Manual gives how to edit and
debug a BASIC program.

3) When changing the communication module mode and continuing
the operation, see Section 2.3.

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHACGE

2.3 Communication Module Mode and Mode Change

After the communication module starts up, the mode can be changed giving
the system command from the console (see Section 4) or giving the debug
command from the debugger (see Section 5).

This section gives the outline of how to change the communication module
mode with the system command and the debug command.

starts up

l

[communication module]

When a PC/AT is used:

1) Start up the PC/AT using the AD51H-BASIC.
2) Select the PROGRAMMING from the MAIN MENU.
3) Select the ON-LINE PROGRAMMING from the PROGRAMMING.

l

r

When the communication module
mode setting switch 1 is posi-
tioned to “4"

!

|

tioned to "2" or "3"

When the communication module
mode setting switch 1 is posi-

When the communication module
mode setting switch 1 is posi-
tioned to "0" or "1"

Editing mode
(1)

Programming mode

Editing mode
(2

S): System command
D): Debug command

B): BASIC command

S) /— T~
Input
GOR Execution mode
S)
Input D)
System mode Debug mode Input
D) : GOR
Input
GO P ?
B) Input v B) Input
out SYSTEM B ot SYSTEM
START or press START or press
[Ctrl] + [D] [Ctrl] + [D]

2. STARTING UP THE COMMUNICATION MODULE AND

MODE CHACGE

(1)

(2)

3)

Programming modes

(a) In the modes, it is possible to edit/debug a BASIC program,
write/read data to/from a memory card, and to set a multitask.

(b) The programming modes are divided into the system mode and the -
editing mode (1).

System mode

(a) The communication module enters this mode when the communica-
tion module mode setting switch is positioned to "4" or when the GO
command (GO P) is input from the debugger in the debug mode.

(b) The console is controlled by the operating system in the communi-
cation module.

(c) By giving the system command, the following operations for each
BASIC program can be executed:

Console display

s » Writes/reads a BASIC program
> to/from the execution program
area of the memory card
(installed to MEMORY CARD [1}
of AD51H-S3) and the EEP-ROM
of A1SD518S.

« Sets the multitask.

Editing mode (1)
(a) The communication module enters this rhode when the START' com-
mand is input using the console (in the system mode).

(b) The interpreter (an operating system to analyze and execute BASIC
commands) uses the console.

(c) By giving a AD51H-BASIC command or function, the following op-
erations for each BASIC program.

Console display

OK » Editing and debugging

. » Writes/reads a BASIC

i_i=— Cursor located here program to/from the file stor-
age area of a memory card.

2. STARTING UP THE COMMUNICATION MODULE AND
MODE CHACGE ' MELSEC-A

(4) Execution mode

(a) The communication module enters this mode when the communica-
tion module mode setting switch 1 is positioned to "0" or "1" or when
the GO command is input from the console or debugger.

(The communication module enters this mode when the RUN
keyswitch/RUN switch is positioned to RUN.) ' :

(b) Set the multitask to execute several BASIC programs in the normal
mode. '

(5) Debug mode

(a) The communication module enters this mode when the communica-
tion module mode setting switch 1 is positioned to "2" or "3" or when
the GO command is input using the console.

(The communication module enters this mode when the RUN
keyswitch/RUN switch is positioned to RUN.)

(b) The communication module debug (an operating system to analyze
and execute debug commands) uses the debugger.

(c) By giving a debug command input from the debugger, it is possible
to debug each BASIC program in the multitask system.

Terminal used as the debugger

¢ Controls a specified BASIC
program.

¢ Inputs and outputs data to a
memory or devices that can
be accessed using a BASIC
program.

e Changes the communication
module mode.

D>

(6) Editing mode (2)
(a) The communication module enters this mode when the START com-
mand is input from the debugger ’

(Another task than specified using the START command continues
in the multitask system.)

(b) The debugger is controlled by the interpreter.

(c) By giving an AD51H-BASIC command or function, it is possible to
correct a BASIC program when another BASIC program is being
edited.

Terminal used as the debugger

OK
" {Zie— Cursor located here

3. COMMAND EXPLANATION FORMAT

MELSEC-A
3. COMMAND EXPLANATION FORMAT

This manual gives explanations about the commands as shown below:

Titles are for each commands.

l\l 3. XXXOXXXXXX XXX XXX

MELSEC-A
Operation contents 3.2 XXOOKXXXXXKXXXKXKXXXXXKKXK
when a command is XXXXXXXXXXXXXAXX XXX XXX KKK XXX XXX XXXX XXX XX Gives a command
used. | name.
“INPUT PROGEDURE" 3.2.1 XOOUXXOOOK XX XXX AKX XAKX (XXX XX XX)
shows the command XXXXXXXXXXXXXAXKXXXXXXXXXKXX XXX XXX XXX XXX XX
and its parameter
sequence. XXXX(XXXXX) .
- - Operation
| \ts abb KXKXXXXXXXXXXXXXXXXX : er:(ecuted usi:g
Indicates its abbrevia- the comman
tion used when the —] | K X%] XXX - X -] Xxaoxxxxx I——-@—@—-@ :
command is input. XXXXXXXXXXXXXXXX _ Shows the key
input procedure
[k {3 {000 - x - xxxxooaxsoc b xxxx 1o execute the
*OPERATION EXAM- operation.

PLE" shows (a) the key
input procedure when AXXXXX XXXXXXX

the command Is used XXKXXHXX XXX XXXXXKEX XXX XKXXXKXK XXX KKK XXX XXX XXX XXX
and (b) its display XXX

Shows the operation [xx] E3
contents when the n)\//—\
command is used.
XXXXX O (X X xxxx |

- - Shows the key

operation to use

Shows the screen

status before the] XXXXAXX the command.
command is Input.

Shows the screen \]'/—\

status after the’

command is input.
XXXXX XXXXXXX
/0

r /_. [xH x o x x] - [XXXXXXXXXXXXXXXXXXXXXXXX

According to the above XXXXXXXXXXXXXXXXXXXXXX

operation example, I

*"OPERATING PROCE- JOXXXX Describes how to
DURE" gives the do key operation.

procedure to input the
command and its pa-
rameters step by step.

Gives the key input
procedure.

Shows the screen
status after the key [XXXXXXXXXXHXHXXXKXXXXXXXXXXXKXXXXXXXXXXXX

input.
o XXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXX XXX
l XXXXXXXXXXXXXXX

. XXXXXXXXXXXXXXXXXXXXXX_XXXXXXXXXXX

—

Gives precautions, and describes the
relevant commands.

4. ONLINE PROGRAMMING

4. ONLINE PROGRAMMING

Online programming refers to such operations as editing/debugging the BA-
SIC program, and writing/reading the BASIC program to a memory card, FD,
or the PC/AT HD.

(Only the BASIC programs in a task can be debugged online.)

This section tells how to use system commands when (a) editing/debugging
the BASIC program, and (b) writing/reading the BASIC program to/from a
memory card, FD, or the PC/AT HD using the console in the system mode.

]

(M

(2

Since most of this section concerns key Inputting and displays on the console, the expla-
nations assume that all key inputting and displays refer to the console.

When key inputting and displays refer to the debugger rather than the console, the word
"debugger"” is always used to avoid misunderstanding.

Executing the operations discussed in this section requires the following preparations (see
Section 2 for details):

® Setting the ADS1H switch to program onling..........oeciceeeeeerersesesessseseseo s See Section 2

"® CoNNECUNG the CONSOIEcrreseecns e ceseernecerseses onssams sass sse s sessssesorvmseemsonssons See Section 2

4. ONLINE PROGRAMMING

41 System Commands

Table 4.1 lists the system commands (input from the keyboard to the console)
used for online programming.

Table 4.1 List of System Commands

Module
R System . Reference | Availability
Classification Command _ Function Section [ApsiHIA1SD
. -83 | 518
Makes a copy of data from a memory card, and writes
CCOPY the copy to another memory card. (Sets a backup 4.2.1
memory card.)
Memory card CFORMAT Formats a memory card (physical format). 4.2.2 o «
control CFORMAT? . Displays information about memory card formatting. 4.2.2
CRECOVER 299?;/?;2::’}1nusable area in the file area of a 4.9
FFORMAT Formats the file area in a memory card (logical format). | 4.10
: Reads data from a designated BASIC task area of the
Execution MLOAD*1 memory card/EEP-ROM using the corresponding 4.3.1
program BASIC task area in the communication module.
! f o o
information Writes data in a designated BASIC task area in the
control MSAVE communication module to the corresponding BASIC 4.3.2
task area (multitask setting is automatically-done).
Multitask SET Changes the multitask setting description. 4.4.1
setting : . : sy o o
control S.ET? Displays the multitask setting description. 44.2
| Switches the commuriication module from the system
START"1 mode to the editing mode (1). (For editing/debugging 4.5.1
Mode each program) : : o o
control - —
GO Switches the communication module from the system 45.2
mode to the execution mode (2) or debug mode. e
Interpreter : . o .
” Stops the interpreter operation in a designated BASIC
operation TKILL™ task area in the communication module. 4.6 ° °
control
EXIT Displays the MAIN MENU screen on the console. 4.7
Others HELP Displays a list of system commands, descriptions of 48 ° °
functions, and command input formats. .

o: Available x: Unavailable
*1 Cannot be extecuted with tasks that contain compiled BASIC programs.

4. ONLINE PROGRAMMING

4.2 Copying/Deleting Data From a Memory Card

This section tells how to use system commands to copy/delete data from a
memory card.

4.2.1 Copying data from a memory card and wntmg that data to another memory card (CCOPY com-
mand)

This operation backs up data by writing it to another memory card.

INPUT PROCEDURE (This command is also referred to as "CC")

To use the copy source to verify that correct copying has been done:

Memory card interface number R Memory card nderface number N
CoPY sP ponding bo the copy source . ’ corresponding 1o the copy target . ’ v Enter
Command
. Verification

When only making a copy:

Memory card inlerface number R Memory card interface number R
COPY SP corresponding o the copy source . ’ corresponding Yo the copy target . Enter
Command

OPERATION EXAMPLE

Writes a copy of data from the memory card installed in MEMORY CARD[1] to the memory card installed in MEM-
ORY CARDJ2], and verifies that copying has been done correctly.

Before the command is input

N - (e HOHPHYHsP o H M H =]

Command Memory card interface number Memory card mterface number
correapanding © he copy source cofregpondng o he copy target

Enter
O .Verification Copying is :
executed

After the command is input

8>CCOPY 0, 1:,V
COPY(Y/N)?Y
COPY OK

S>

OPERATING PROCEDURE

(O P] III Input the CCOPY command to write a copy of data in

one memory card to another memory card.

© 8>CCOPY

— 1

.

(1) Precautions when using the CCOPY command
. gqfore copying, use the CFORMAT command to format the memory card in the copy target
ve

» Make sure that the copy source memory card capacity < copy target memory card
capagity. .

4. ONLINE PROGRAMMING

[sP o :H, H1H:] EI Input the copy source memory card interface number
1 (accompanied by a colon), followed by the copy target
§>CCOPY 0, 1: memory card interface number (accompanied by a colon
and a comma). The numbers that can be input are "0"

and "1".

0: Corresponds to the AD51H-S3 MEMORY CARD[1]
1: Corresponds to the AD51H-S3 MEMORY CARD|2]

(ThIS example assumes that a copy of- data in the mem-
ory card installed in MEMORY CARDI[1] is written to the
memory card installed in MEMORY CARD[2].)

El Designate "V" to verify that data has been correctly

copied from the copy source to the copy target.

S>CCoPY 0:, 1,V . . .
If verification is not executed, press the [Enter] key.

(This example assumes that verification is executed.)

| Enter | E The "COPY (Y/N)?" dialog box appears.
Press the [Y] key to execute copying.

S>CCOPY O, 1.,V
COPY(YIN)?Y Press the [N] key to cancel the copy operation.

(The console remains in a wait state until either key is
pressed.)

[EI The next line shows the result of the execution.

SCCOPY 0, 12,V When copying is executed normally, the screen shows

COPY(YN?Y "COPY OK".
(S:SPY OK
If copying is not executed normally, an error message

appears.
(This example assumes that copying is executed nor-

- T mally.)

[EI "S>" appears after the execution result is displayed.
Input the necessary command.

(2) References
¢ Formatting a memory card: CFORMAT COMMAN.rnrrurrrrseone s seerres e (see Section 4.2.2)
« Displaying memory card format information: CFORMAT? comrmand (see Section 4.2.3)

4. ONLINE PROGRAMMING

4.2.2 Formatting a memory card (CFORMAT command)

This operation formats a memory card installed in MEMORY CARDJ[1] or
MEMORY CARDI[2].

INPUT PROCEDURE (This command is also referred to as "CF")

[GFORMAT | 5P | Werory cusmass o - -, -~ G

Command

- Execution program area mem- | .
—'I Overall memory size ’—D—-l ory size - u - File storage size I—-Ijnter I

OPERATION EXAMPLE.
Format a 512K byte memory card installed in MEMORY CARD1 as shown below:

Before the command is input '
~ (CHFHOHRHMHAHTHsP o]

Command Memory card interface No.

AT HAHSHKH - Ho T M-]
@ Card name

After the command is input .. Memory card is named

............................ Sets the memory card capacity

(for 8 x 64K bytes)

S>CFORMAT 0., "TASK-DTM", 8,6, 0, 2

FORMAT(Y/N)?Y Overall memory size
L [~ 0P L S Sets the capacity of the t
s> n - program area (for 6 x 64K bytes)
xecution area memory in the memory card

............................ Sets the capacity of the file stor-
_’/—\- - age area (for 2 x 64K bytes) in
ilo storage size the memory card

ormatting is executed

OPERATING PROCEDURE

O RH{MH{ATT] EI Input the CFORMAT command to format a memory card.

S>CFORMAT

(1) Precautions when using the CFORMAT command
 Formatting a memory card deletes all data in that memory card.
. R%lease the write-protect tab when formatting a memory card which has a write-protect
ta
e Turn OFF the memoré Krotect keyswitch on the AD51H-S3 when the memory card Is
installed in MEMORY CARD|[1

4. ONLINE PROGRAMMING
. — MELSEC-A

[(sP o} : M,] l__é:l Input the interface number (which corresponds to the

memory card to be formatted) accompanied by a colon.

$>CFORMAT 0, The numbers that can be input are "0" and "1".

0: Corresponds to the AD51H-S3 MEMORY CARD[1]
1: Corresponds to the AD51H-S3 MEMORY CARD|2]

This example assumes that the memory card installed
in MEMORY CARD][1] will be formatted.

'} (A {s{kH -} E_-I Input a name for the memory card using up to 16 alpha-
D]] numeric characters and symboils.
This name must start with an alphabetic character. The
S>CFORMAT 0:, *TASK-DTM", name must be in quotation marks.
This example assumes that the memory card is named
"TASK-DTM".
IZI Designate the overall capacity of the memory card using
a number equal to or greater than one (in units of 64K
bytes).

S>CFORMAT 0:, “TASK-DTM", 8
Set the capacity which is consistent with the following
formula:

Overall memory size (Overall capacity) = (Execution
program area memory size + File storage size)

This example assumes that a 512K byte memory card is
formatted. '

(8 x 64K bytes —» 512K bytes)

El Designate the capacity of the execution program area in
the memory card by using a number from 0 to 6 (in units

of 64K bytes).

The maximum capacity of the execution area is 384K
bytes. This area is allocated to the operating system
area (128 bytes) and the BASIC task number area
(where the execution programs is stored).

S>CFORMAT 0:, "TASK-DTM", 8, 6,

(This example assumes that the execution program area
capacity is set to 384K bytes.)

E] Input "0" as dummy data.

S>CFORMAT 0, “TASK-DTM*, 8, 6, 0,

4. ONLINE PROGRAMMING

MELSEC-A

Designate the capacity of the file storage area in the
memory card using a number equal to or greater than

S$>CFORMAT 0:, "TASK-DTM", 8,6, 0, 2

one (in units of 64K bytes).

This area stores BASIC programs (that are not stored in
the BASIC task area) and data files.

(This example assumes that the file storage capacity is
set to 128K bytes.)

(2 x 64 bytes — 128K bytes)

The "FORMAT (Y/N)?" dialog box appears.
Press the [Y] key to execute formatting.

S>CFORMAT 0:, "TASK-DTM", 8, 6,0, 2

FORMAT(Y/N)?Y

Press the [N] key to cancel the format operation.

(The console remains in a wait state until either key is
pressed.)

(This example assumes that formatting is executed.)

The next line shows the result of the ekecution.

When formatting is executed normally, the screen

S>CFORMAT 0:, "TASK-DTM", 8, 6, 0, 2 shows "FORMAT OK".

FORMAT(Y/N)?Y
FORMAT OK

S>

If formatting is not executed normally, an error message
appears.

(This example assumes that formatting is executed nor-
mally.)

"S>" appears after the execution result is displayed.
Input the necessary command.

(2

3

(4)

Precautions when using the CFORMAT command to designate capacities

» The overall memory size (overall capacity) must be consistent with the memory card to
be formatted. :
The overall memory size must be equal to the execution program area memory size
plus the file storage size.

« In the execution program area of a memory card, if the entire BASIC task number area is
divided into eight parts, the maximum capacity of one part is approximately 48K bytes.

. Th[e]s)ize can be designated in decimal, hexadecimal ("&H[I{][][]*), or binary ("&B[][]
to[]").

Logically formatting a memory card

. Thedexecution area is logically formatted when the SET or MSAVE command is initially
used.

« Logically format the file storage area using the FFORMAT command.

Reference

« Displaying memory card format information...CFORMAT? command (see Section 4.2.3)

4. ONLINE PROGRAMMING

4.2.3 Displaying memory card format information (CFORMAT? command)

This operation displays memory card formatting information installed in MEM-
ORY CARD[1] or MEMORY CARDI[2] of the AD51H-S3.

INPUT PROCEDURE (This comménd is also referred to as "CF?")

I CFORMAT H SP H Memory card interface No.'l

Command

OPERATION EXAMPLE
Displays format information from the memory card installed in MEMORY CARDJ[1].

Before the command is input

s [CHFHOHRHMHAMTH? - sP
Command

O Memory card
. interface No.

After the command is input

S>CFORMAT? 0:

Card Name : *TASK-DTM"
Card Size : 512K bytes (8)
Program Size : 384K bytes (6)
Canvas Size : OK byte (0)
File Size . 128K bytes (2)

\/—\

OPERATING PROCEDURE

[O R M A] III Input the CFORMAT? command to display memory card

format information.
ormat informatio
S>CFORMAT ?
IZ] Input the interface number (corresponding to the mem-
ory card whose format information is displayed) accom-

S>CFORMAT 2 0: panied by a colon.
| The numbers that can be input are "0" and "1".

0: Corresponds to the AD51H-S3 MEMORY CARD[1]
1: Corresponds to the AD51H-S3 MEMORY CARD|2]

if the [Enter] key is pressed without being designated,
the result is the same as if "0" were designated.

(This example assumes that format information from the
memory card installed in MEMORY CARD{1] is displayed.)

4. ONLINE PROGRAMMING

- 8>CFORMAT? 0:
Card
Card
Program
Canvas
File

Name

Size
Size
Size
Size

"TASK-DTM*

. 512K bytes (8)
: 384K bytes (6)
: OK byte (0)

: 128K bytes (2)

2]

MELSEC-A

Displays the command execution result.

When formatting is executed normally, the next lines
show format information from the designated memory
card.

If formatting is not executed normally, an error me'ssa'ge
appears.

When formatting is executed normally, the display on
the left is shown.

(1) Card Name * Name of the memory card that

is formatted.

(2) Card Size Corresponds to the capacity of
the whole memory card
designated when the memory
card was formatted.

() indicates the entire memory
size designation when the
memory card is formatted using
the CFORMAT command.

(3) Program Size Corresponds to the capacity of
the execution program area when
the memory card is formatted.

() indicates the capacity
designation when the memory
card is formatted using the

CFORMAT command.
(4) Canvas Size
(5) File Size

Should be ignored.

Corresponds to the capacity of the
file storage area designated when
the memory card was formatted.

() indicates the capacity
designation when the memory
card was formatted using the
CFORMAT command.

"S>" appears after the execution result is displayed.
Input the necessary command.

(1) Reference

¢ Formatting a memory card

eerreenenenee . CFORMAT command (see Section 4.2.2)

4. ONLINE PROGRAMMING
MELSEC-A

43 Writing/Reading an Execution Program

This section tells how to (a) write an execution program (stored in a commu-

nication module BASIC task number area) to a memory card/EEP-ROM, and

(b) read an execution program from the memory card/EEP-ROM using a
BASIC task number area. Both are done by using system commands (to
control execution program information).

4.3.1 | Reading an execution program stored in a memory card/EEP-ROM using the cbmmunication
module (MLOAD command)

This operation reads an execution program stored in a memory card/EEP-
ROM using the corresponding BASIC task number area in the communication

module.

INPUT PROCEDURE (This command is also referred to as "ML")

To verify the read data with the source data after reading the execution program:

[MLOAD }-{ 5P | BASIC task No.

Verification

Command

When only reading:

[MLOAD |{ SP }-{ BASIC task No. |-{ Enter |

Command

OPERATION EXAMPLE

Reads an execution program (stored in the BASIC task No.1 area of a memory card) using the BASIC task No.1 area,
and verifies the read program with the source program.

Command BASIC task Verification

Before the command is input

After the command is input

S>MLOAD 1,V
LOAD(Y/N)?Y
LOAD OK

S>

S> ‘
No.1

O

Memory card

Execute

Operating system area

read T

Execution
program area

1

BASIC task No.1

ADS1H-S3 program area

File storage area

1

(1) Memory card location
« To use the MLOAD command for a memory card, the memory card must be installed in
AD51H-S3 MEMORY CARD[1].

4. ONLINE PROGRAMMING |

OPERATING PROCEDURE
(M| (OF{A{D]~ sP] II' Input the MLOAD command to read the execution pro-
gram (stored in the memory card/EEP-ROM) using the
S>MLOAD communication module execution program area.

EI Designate the BASIC task No. area (AD51H-S3: 1 to 8,
A18D51: 1,2) of the program stored in the execution
S>MLOAD 1 - program area.

(This example assumes that the BASIC task No.1 pro-
gram area is read.) :

L HV] ,
@ Designate "V" to verify the read program with the source
S>MLOAD 1,V program after reading the program.

Press the [Enter] key to read without doing verification.

Il

(This example assumes that the read program is verified
with the source program.)

L < 1

(2) Precautions when using the MLOAD command ' '

« The BASIC task No. area (designated by using the MSAVE or SET commands) must be
as large as the communication module BASIC task No. area (designated using the START
command).

* Make sure that the interpreter is not working in the communication module BASIC task
No. area (where the execution program stored in a memory card/EEP-ROM is written?.
When thg interpreter is working, stop the interpreter operation by using the TKILL
command. ,

4. ONLINE PROGRAMMING

MELSEC-A

E] The "LOAD (Y/N)?" dialog box appears.

S>MLOAD 1,V
LOAD(Y/N)?Y

Press the [Y] key to execute reading.
Press the [N] key to cancel the read operation.

(The console remains in a wait state until elther key is
_pressed.)

(This example assumes that readlng is executed)

IEI The next line shows the result of the execution.

S>MLOAD 1.V
LOAD(Y/N)2Y
LOAD OK

S>

When reading is executed normally, the screen shows
"LOAD OK".

If reading is not executed normally, an error message
appears. '

(This example assumes that reading is executed nor-
mally.)

EI "S>" appears after the execution result is displayed.
Input the necessary command.

(2

References

« Writing an execution program (stored in the communication module) to a memory
card/EPP-ROM........cucimircreinnnnsnesnsssne cssscesssnnsone MSAVE command (see Section 4.3.2)

« Changing the multitask setting/setting descnptlon ..SET command (see Section 4.4.1)
« Displaying the multitask setting description... ..SET? command (see Section 4.4.2)

« Setting the communication module to the edmng mod (I'
... TART command (see Section 4.5.1)

. Stops the |nterpreter operatuon ina speclflc BASIC task No. area
TKILL command (see Section 4.6)

4. ONLINE PROGRAMMING

4.3.2 Writing an execution program (stored in the communication module) to a memory card/EEP-
ROM (MSAVE command) :

This operation writes an execution program (stored in a designated BASIC
task No. area of the AD51H) to the corresponding BASIC task area of a
memory card/EEP-ROM.

Executing this operation automatically sets multitasking in the designated
task area. ' '

INPUT PROCEDURE (This command is also referred to as "MS")

To verify the written program with the source program:

[MSAVE |{ SP |{ Task No.

Command Verification

Only to write:

| MSAVE | SP |- Task No. }{ Enter |

Command

OPERATION EXAMPLE

Writes an execution program (stored in the BASIC task No. 1 area) to the BASIC task No. 1 area in a memory card,
and verifies the written program with the source one.

Before the command is input

maﬂmn-

Command BASIC Veritication
. task No.
Main memory
U Enter |
Execute Memory card
i i writin
After the command is input 9 T Operating system area
S>MSAVE 1, V BASIC task No.1 —T-'a‘s-k-l\l-o_l- 'ar'e-a- T

SAVE(Y/N)?Y Execution [T qe——— o]
SAVE OK
S>

program area

1 __ |

File storage area

(1) Memory card location . .

* To use the MSAVE command with a memory card, the memory card must be installed
in MEMORY CARDI1] of the AD51H-S3. '

(2) Precautions when using the MSAVE command

» Use the START command to start the interpreter. Then (a) execute the SYSTEM com-
mang to the interpreter, or (b) press the [Ctrl] + [D] keys, and execute the MSAVE com-
mand.

« Since writing another execution program to the BASIC task No. area (to which an exe-
cution program has already been written) can cause an overwrite in the BASIC task
No. area, take the following steps:

(a) Write all execution programs to the execution area of the memory card/EEP-ROM.
(b) Reset multitasking when appropriate.

4. ONLINE PROGRAMMING

OPERATING PROCEDURE
[(MH{sHA] [E]{sP] EI Input the MSAVE command to write an execution pro-

gram stored in the communication module to the mem-
$>MSAVE ory card/EEP-ROM.

EZZI Designate the communication module BASIC task No.
S>MSAVE 1 area (AD51H-S3: 1 to 8, A1SD51S: 1,2).

(This example assumes that the execution program is
stored in the BASIC task No.1 area.)

Designate "V" to verify the written program with the

S>MSAVE 1.V source program after writing the program.
Press the [Enter] key to read without verification.
(This example assumes that the written program has
been verified with the original.)

—

(3) Precautions when using the MSAVE command
« Data for the communication module BASIC task area is written as an execution pro-
gram to the corresponding BASIC task area of a memory card/EEP-ROM.
« After writing the execution program, multitasking is automatically set in the designated
BASIC task area. The setting description is shown below:
The SET command explanation in this manual gives details.

Starting condition "BOOT" attribute is set. _
SiZB seeseressrsenersinssoennmennnnr DOSIgNated task size when the START command is executed
is set.

Execution sequence...... Nothing is set.

4. ONLINE PROGRAMMING

LY I Enter |

MELSEC-A

E] The "SAVE (Y/N)?" dialog box appears.

S>MSAVE 1,V
SAVE(Y/N)?Y

Press the [Y] key to execute writing.
Press the [N] key to cancel the write operation.

(The console remains in a wait state untll either key is
pressed.) :

(This example assumes that writing is executed.)

EI The next line shows the result of the execution.

S>MSAVE 1,V
SAVE(Y/N)?Y
SAVE OK

S>

When writing is executed normally, the screen shows
"SAVE OK".

If writing is not executed normally, an error message
appears.

(This example assumes that the MSAVE command is
executed normally.)

E] "S>" appears after the execution result is displayed.
Input the necessary command.

(4)

References :
» Reading an execution program (stored in a memory card/EEP-ROM) using the main

memory
... MLOAD command (see Section 4.3.1)

» Changing the multitask setting/setting descriptionSET command (see Section 4.4.1)
« Displaying the multitask setting description.............. SET" command (see Section 4.4.2)

. Settmg the communication module to the editing mode
.. R command (see Section 4.5.1)

4. ONLINE PROGRAMMING

4.4 Setting/Changing/Displaying Multitasking Descriptions

This section tells how to set/change/display multitasking descriptions using
system commands to control the multitask setting.

The multitask setting is used to set the starting conditions when starting up

the communication module and executing several programs during multitask-

ing. ’ :

The multitask setting contains the following items designated by using the -
MSAVE or SET commands:

(1) Starting condition

Sets the condition when the BASIC program is stored in the BASIC task
No. area.

(a) START

« After power to the communication module is turned ON or the
communication module is reset, an execution program (stored in
the memory card/EEP-ROM execution program area) is read using
the communication module execution program area, and program
execution is started. :

(b) BOOT

« When the communication module is started up, an execution pro-
gram stored in the memory card/EEP-ROM BASIC task No. area
is read by using the communication module execution program
area. :

« If the program being executed gives a ZSTART command, then the
designated BASIC program will start.

() IT

e When the communication module is started up, an execution pro-
gram stored in the memory card/EEP-ROM BASIC task No. area
is read by using the communication module execution program
area.

e If a PC CPU turns ON an output signal (such as the start task
number designation flag or task start signal) for the communication
module, then the designated BASIC program will start.

(d) ON ‘

« After starting up the communication module, if the BASIC program
being executed gives a ZSTART command, then the designated
program will be read from the memory card file storage area and
the execution will start.

(e) OFF
« Invalidates the multitask setting for a task No. area.

If this is executed for a task No. area, then the BASIC program
cannot be executed in that area.

(2) Task size

Designates the size of the BASIC task area (16K, 32K, 48K, or 64K
bytes).

4 ONLINE PROGRAMMING

~ (3) Execution sequence

After the communication module starts up, if several programs are
installed in the corresponding task No. areas and those programs are
executed, designate which program will be executed first.

If an execution program is written to the memory card/EEP-ROM execu-
tion program area used for multitasking, then the muititasking is auto-
matically set in that area.

This section tells how to set/change/confirm the multitask setting.

(1) Changing the task size in the multitask setting

« To change the task size in the multitask setting in order to enlarge the corresponding
task No. area, take the following steps:

(a) Save all the communication module execurtion programs using the SAVE command.

(b) Reset each task size so that all execution programs (max.8) can be written using
the appropriate area designated when the memory card was formatted.

(2) Section 4.3.2 gives details about the MSAVE command.
(¢) Reset the communication module.

(d) Reacci’ the execution program with LOAD command and execute the MSAVE com-
mand.

4.4.1 Setting/Changing the muititask (SET command)

This operation sets ‘multitasking for a task No. area and changes the multitask
setting.

INPUT PROCEDURE (This command is also referred to as "S")

To set/change the starting condition, size and execution sequence:

l SET H SP H BASIC task No. }—D—-‘ Starting condition - - n - Tasksize l_'D—'l Execution sequence H Enter |

Command

To change the starting condition and execution sequence:

ISETH sP H BASIC task N°']—G—'I Starting condition - n n - . Execution sequence Enter I

Command

To change the starting condition and size:

I SET H SP H BASIC task No. I—D—-’ Starting condition - n n - TasksizeH Enter—l

Command

To change the starting condition:

[seTH sp BASICtaskNo@Slarting condition - .]+ 1} P |- Enter |

Command

. To change the size and execution sequence:

SET H SP H BASIC task No. . - n n - Taskslz@ Exacution sequonceH Enter I

Command

To change the execution sequence:

LSET H sP H BASIC task No. - - n n - - ExoeuﬁonsoquenceH En’.erl

Command

To change the size:

H SP H BASIC task No. - - n - Tasksize Hjnlar

Command

4. ONLINE PROGRAMMING = o

OPERATION EXAMPLE

Sets multitasking for the BASIC task No.1 area.

Before the command is input

s [sHeEHTHsP 1M . HsHTHAHRHT]
- Command Task No. Starting condition _

U

After the command is input

S>SET 1, START, IP, 48,2 - n ﬂ
& (e
Task size

[H2 - Enter |

Execution
sequence

OPERATING PROCEDURE

S E] 'SP | II' Input the SET command to set/change multitasking.

{i/\l

S>SET 1

Designate the BASIC task No. area (AD51H-S3: 1 to 8,
A1S8D518: 1, 2) for which multitasking is set.

(This example assumes that multitasking is set/changed
for the communication module BASIC task No.1 area.)

[-]

[, H{s] AHR] EI To set/change the starting condition for the communica-
tion module BASIC task No. area, select one of the
$>SET 1, START _ following items:

1) START
2) BOOT
3)IT
4)ON
5) OFF

If the starting condition is not designated, input a comma {,).
In this case, the previously designated starting condition
will be used.

!

(This example assumes that START is selected.)

(1) Section 4.4 gives details about starting conditions.

4. ONLINE PROGRAMMING

MELSEC-A

E Designate "IPF" as the type of execution program.

S>SET 1, START, IP

|E| Input "16", "32", "48", or "64" to set/change the corre-
sponding BASIC task area. :

S>SET 1, START, IP, 48

If the task size is not designated, input a comma (,).

In this case, the previously designated task size will be
used.

(This example assumes that the task size is set to 48K
bytes.)

El When the communication module is started, input a
number from 1 to 8 to set/change the execution se-

8>SET 1, START, IP, 48, 2

quence of the multitask programs for which "START" is
designated. (When "1" is designated, the correspond-
ing program is given the highest priority.)

If several task areas have the same number, the tasks
stored in those areas are processing in ascending order
of the task numbers.

When the execution sequence is not designated, press
the [Enter] key. _

In this case, the previously designated execution se-
quence is used.

(This example assumes that "2" is designated for the
execution sequence.)

The next line shows the result of the execution.
When the SET command is executed normally, the screen

S>SET 1, START, IP, 48, 2
SET OK
S>

shows "SET OK". If the SET command is not executed
normally, an error message appears.

(This example assumes that the SET command is exe-
cuted normally.)

"S>" appears after the execution result is displayed.
Input the necessary command.

(2

(3

Size designation
. Th[e]s)lze can be designated in decimal, hexadecimal ("&H[][I[I[I*), or binary ("&B[][]
to

References

o Writin r:gEBASIC task area information stored in the commumcatlon module to a memorg
Card/EEP-ROM ...t v e s saos e ree senesan MSAVE command (see Section 4.3.2)

« Displaying the multitask setting description............... SET? command (see Secuon 44, 2)

« Setting the communication module to editing mode "'IQRT a s 45.1)
... command {see Section

4. ONLINE PROGRAMMING

4.4.2 Displaying the multitask setting description (SET? command)

This operation displays the multitask setting description for each BASIC task
No. area of the communication module.
INPUT PROCEDURE (This command is also referred to as "S?")

To designate one of the BASIC task No. areas:

[sET? - sP]—-{Taas.c Task No. o , }—

“Command

[Designate the memory location dlsplayI——D—{ Device to be display |—{ Enter |

To designate all BASIC task No. areas:
[SET? | Enter |

Command

OPERATION EXAMPLE

Displays the multitask setting description for the BASIC task No.1 area of the communication module.

Before the command is input

> . (sHEHTH2H{sP M1, ML, R Enter]
Command BASIC Memory location DRAM
l_’/—\ Task No. display

U

After the command is input

S>SET?1,LR
Task No. Type Slze Start Condition Start No. Location
P 48

START 2

Location Size Task No.
48

112

OPERATING PROCEDURE

S E] 2] Input the SET? command to display the multitask setting -
' description.
S>SET?
[sP {1 | Enter | [Z' Designate the BASIC task No. area (AD51H-S3: 1 to 8,
A1SD51S: 1,2) whose setting description will be dis-
S>SET? 1 played.

When all areas have been designated, press the [Enter]
key.

(This example assumes that No.1 has been desig-
nated.)

4. ONLINE PROGRAMMING

MELSEC-A

BN

E-_I When booting from a DRAM, input L to display the
S>SET?1.L ' allocation of each task.

Input a comma (,) to cancel the display.

The following items are displayed:

1) Start No.
2) Size
3) BASIC task No.
' E Input devices (U/R) which display the multitask setting.
S>SET? 1,L.R

U: Displays the user's ROM multitask setting.

R: Displays the multitask setting currently booted
from the DRAM.

4. ONLINE PROGRAMMING

MELSEC-A

IE' The execution result of the command is displayed.

When a command is executed normally, the multitask
setting information about the designated task No. area

S>SET? 1,LR

Task No. Type Size Start Condition Start No. Location
B P16 START 2 48

Location Size Task No. '

48 16 1
64 32 5

96 16 -
112 16 2 .

and the allocation of each task are displayed beginning
with the following line.

If the command is not executed normally, an error mes-
sage, etc. are displayed in the following line.

The following is displayed when a command is executed
normally. (In the example on the left, the setting descrip-

tion of the BASIC task No. 1 area are displayed.)
The SET? command explanation gives details about the

displayed description.

1) Task No.

4) Start Condition...

5) Start No.

6) Location............

Displays the task No. of the
corresponding task No. area.

Displays the IP/CP that was
input right after the start
condition by using the SET?
command.

Displays the corresponding task
No. area size.

Corresponds to the task size set
by the SET? command.

Used to execute the BASIC
program in a designated area.
Corresponds to the start
condition set by the SET?
command.

Indicates the execution sequence
when the start condition 4) is set
to START.

Corresponds to the execution
sequence set by the SET?
command.

If the start condition is not
"START", "-" will be displayed at
the position corresponding to this
item, since it is ignored.

Displays the location in memory
where the task has been
allocated. (When the type is CP.)

IE] “S* appears after the execution result is displayed.

Input any necessary command.

()

References

« Writing BASIC task area information.............

..... MSAVE command (see Section 4.3.2)

(stored in the communication module) to a memory card/EEP-ROM

« Setting/changing the multitask setting................

description

4-22

....SET command (see Section 4.4.1)

..... START command (see Section 4.5.1)

4. ONLINE PROGRAMMING

45 Changing the Communication Module Mode

This section tells how to use the system commands (used to control the mode)
to change the communication module mode.

4.5.1 Setting the communication module to the editing mode (1) (START command)

This operation edits/debugs a program.
INPUT PROCEDURE (This command is also referred to as "ST")

To set/change the task area size:

_sP | . - Task size | Enter |

Command

To not change the task area size:

[START | SP_—{ BASIC task No. [Enter |

Command

OPERATION EXAMPLE 1

Starts editing a new BASIC program in the BASIC task 1 area.
Sets the task 1 area to 48K bytes.

Before the command is input

s [sHTHAHRHTHsP H{ 1}, 48 Enter]
\—///’\ Command Task No. Task size

After the O
command is input

S>START 1,48

?]K ~}— If the interpreter was not operating during the execution,

thg following message appears before "OK":
w *AD51H-BASIC ON-LINE PROGRAMMING Ver [J*
Cursor located here

OPERATION EXAMPLE 2

Starts editing an existing BASIC program in the BASIC task 1 area.
Changes the task 1 area size to 64K bytes.

Before the command is input

e [SHTHAHRHTHEP M- He HaHEwer]
S Command Task No. Task size ‘

After the @
command is input

S>TKILL 1:
KILL OK
S$>START 1, 64

1. If the interpreter was not operating during the execution,

the following message appears before “OK":

\——/——\ "AD51H-BASIC ON-LINE PROGRAMMING Ver []

OK

4. ONLINE PROGRAMMING

OPERATING PROCEDURE

S>START

-]

MELSEC-A

El Input the START command to set the communication

module to the editing mode (1).

IEI Designate the task No. area(AD51H-S3: 1 to 8,

S>START 1

S>START 1, 48

A18D518S: 1,2} in which the BASIC program to be ed-
ited/debugged will be stored.

The task number can be omitted.

Omitiing the task number is regérded as doing the fol-
lowing designation:

1) When the START command is initially input, the
designation is "1".

2) If the START command was already used, the pre-
vious task number is used.

(This example assumes that the BASIC program is ed-
ited/debugged in the task No.1 area.)

Input "16", "32", "48", or "64" to set/change the task area
size (in units of 1K byte).

After completing editing/debugging, giving the MSAVE
command (a) writes the data in the BASIC task area to
the memory card/EEP-ROM, and (b) automatically sets
the task size.

When designating a BASIC task No. area for which'

multitasking is not set, be sure to input the task size.

Even when designating a BASIC task area for which
multitasking is already set, be sure to input the task size
if the task size needs to' be changed.

If the set task is not changed, just press the [Enter] key.

(This example assumes that the BASIC task 1 area size
is set/changed to 48K bytes.)

-

(1) Size designation

» The size can be designated in decimal, hexadecima! ("&H[J[][][]), or binary ("&B[][]

to []).

4. ONLINE PROGRAMMING

MELSEC-A

ADSTH-BASIC ON-LINE PROGRAMMING Ver[] ' E The next line shows the result of the execution.

or

When the START command is executed normally, the
screen enters the state shown on the left.

Start editing/debugging the program.
The AD51H-BASIC Programming Manual tells how to

° edit/debug the BASIC program.
If the START command is not executed normally, an
error message appears. '

The example on the upper left shows the description
displayed if the interpreter was not started before the
execution.

The example on the lower left shows the description
displayed when the interpreter was already started be-
fore the execution.

SYSTEM IEI To return the communication module from the edit mode
(1) to the system mode after editing/debugging is com-
pleted, execute one of the following:

1) Execute the BASIC SYSTEM command.

K
@ « Stops executing the BASIC program.

S>

« Closes the open file and the communications line.
2) Press the [Ctrl] + [D] keys.
» Stops executing the BASIC program.

» Leaves the open file and the communications line
as they are.

e Can resume (or continue) executing the program
using the CONT command if the BASIC program
was not changed when the communication module
was reset to the editing mode using the START
command.

(2

3

4

Precautions when using the START command

» When the task size must be changed, use the TKILL command to stop operation of the
interpreter in the utilized task No. area in order to edit/debug the BASIC program in the
following task areas:

1) Atask No. area for which the multitask is set

2) Atask No. area that already contains the BASIC program _

In addition, when the task size is enlarged, take the following steps to write the BASIC
program to the memory card/EEP-ROM execution area (using the MSAVE command)
after editing/debugging a program:

1) Write all execution programs to the execution area of the memory card.

2) Reset multitasking so that all apﬁropriate execution programs (max.8) can be writ-
ten using the area designated when the memory card was formatted.

Debugging the BASIC program after executing the START command

« In the editing mode (1), debug the program as shown in the programming manual.
« The debug commands shown in Section 5§ cannot be used.

References

. » Writing the BASIC task area information stored in the main memory to a memory card

«-eeree. MSAVE command (see Section 4.3.2)
» Changing the communication module mode GO command (see Section 4.5.2)

« Stopping the interpreter operation in a designated task No. area
................................... SR ———w——w— (| N By.T.1 ¥ Yo T N CE TR T T RN

‘4, ONLINE PROGRAMMING

MELSEC-A

4.5.2 Setting the communication module to the execution/system mode (GO command)

This operation switches the communication module between the system mode
and the execution/debug/execution (2).

To give the command to debug the BASIC multitask program, set the commu-
nication module to the debug mode. (see Section 5)

To start executing the BASIC program by setting multitasking, set the ¢

munication module to the execution mode (2) to start

om-

When the communication module is returned to the systém mode, giving the

- system command enables the BASIC program to be edited/debugged.

The following table gives the mode and debug start designation when the GO

command is input and the state of

command is executed.

the console and debugger after the GO

Debug Start .
Mode Designation Designation Console State Debuggsetl;;r:r minal Remarks
(YES/NO)
Starts the debugger, .
clears the screen .
YES " aryon Setting
and displays "D>" on : :
go dteh)e debug Clears the displayed the screen. m::gltlasm:ga ASIC
R ° description. Enables the debug progr asm in the
. Sets the terminal to be commands to be input. g
(Execution mode (1)) used for running the P ::or'l;e;gondmg
NO BASIC program. ask No. area,
starting the
g(:ézgon Displayed execution.
mode (2)) descriptions remain
as they are.
i Becomes a general-
(System mode Cannot be and displays "S>". :,‘:23',';?,,‘“" BASIC BASIC programs
during programming) designated. Enables the system) IanreeaaCh task No.
commands to be input. :
[1

(1) BASIC program state when the GO command is executed
» Designating the execution mode (1) starts executing the BASIC program in the same way
when the communication module is started up by setting the communication module mode
switch (1) to "0", "1%, or "3".
« Designating the programming mode stops the execution of all programs in task areas.
In this case, since the task area memory state is not changed, all BASIC programs re-
main as they are.

" 4. ONLINE PROGRAMMING -
MELSEC-A

INPUT PROCEDURE (No command abbreviation)

To set the communication module to the debug mode:

Start
modo debugger

To set the communication module to the execution mode:

[6o H{ sP H{R}{ Enter |

Command Execution
mode

OPERATION EXAMPLE

Sets the communication module to the debug mode:

Before the command is input

s> GO+ SP |4 R, -{ D Enter]

Command - —E—- Designate the start of debugging

Designate the execution mode

After the command is input

8>GOR, D

_—//’——\

Clears the displayed description |

OPERATING PROCEDURE
Input the GO command to change the communication

module mode.

$>GO

(R, D || Enter | [2] Designate the mode.

Input "R" to set the communication module to the exe-

$>GOR, D cution mode.
Input "R, D" to set the communication module to the
debug mode.

(Th|s example assumes that the communication module
is set to the debug mode.)

4. ONLINE PROGRAMMING

MELSEC-A

lzl The next line shows the result of the execution.

When the GO command is executed normally, the
screen enters the state shown below: '

If the GO command is not executed normally, an error

message appears.

The following example shows the displayed description when the GO com-
mand is executed normally: '

1) When the debug mode is designated:

(Debugger)

(Console)

Displayed description when
the GO command is executed

—

Y,

$>GOR,D

— T

U

D>

(Waiting for the debug command to be input)

Clears displayed description,

e T

(Becomes the console used for
running the BASIC program)

2) When the execution mode is designated:

Displayed description when
the GO command is executed

- T

U

Displayed description when
the GO command is executed

__/‘—_—\

{Becomes a general-purpose port
used for running the BASIC program.)

$>GOR

__/_\

U

Clears displayed description.

-

(Bacomes the console used for
running the BASIC program.)

(
| Input the debug command to
debug the BASIC program.

e Section 5 explains the de-
bug command.

« In the BASIC program, the
l console can be used.

[The debugger and console can
[be used in the BASIC program.

(2

Communication module mode change

See the communication module mode change chart in Section 2.3.

(3

Reference
« Displaying the MAIN MENU on the console screen

...... EXIT command (see Section 4.7)

4. ONLINE PROGRAMMING

46 Stopping the Interpreter Operation in a Designated Task No. Area (TKILL Command)

This section tells how to stop the interpreter operation in a designated task
No. area using the system command (TKILL) to control the interpreter opera-
tion.

INPUT PROCEDURE (This command is also referred to as "TK")"

L TKILL || SP |-[Task No. || Enter |

Command

OPERATION EXAMPLE

Stops the interpreter operation in the BASIC task No.1 area.

Before the command is input .
~ (K1 5P {1 H{ Enter |
. Command Task No.

After the command is input

S>TKILL 1
KILL OK
S>

OPERATING PROCEDURE

(K] LSP |- | To stop-operating the interpreter, input the TKILL com-

[Enter | mand accompanied by the corresponding task number
(AD51H-S3: 1 to 8, A1SD518S: 1,2).

(This example assumes that the interpreter operating in
the task No.1 area has been stopped.)

S>TKILL 1

4. ONLINE PROGRAMMING
MELSEC-A

IZ] The next line shows the result of the execution.

When the TKILL command is executed normally, the

ook screen shows "TKILL OK". :
S>

If the TKILL command is not executed normally, an error
message appears.

(This example assumes that the TKILL command is
executed normally.) :

E "S>" appears after the execution result is displayed.
Input the necessary command.

(1) When the TKILL command should be used .
To execute the following operations and stop the interpreter operation.

1) Setting the communication module to the system mode and changing a task size using
the START/SET command. -

2) Setting the communication module to the sgs!em mode and reading an execution pro-
gram in a designated memory card/EEP-ROM BASIC task No. area using the corre-
sponding task No. area in the communication module.

(2) References

« Setting the communication module to the editing mode g_}
....... s e e saes evasemsseessess s ssmsesesasss smsssrnssssssssssnseneeenees S AR T COMMand (see Section 4.5.1)
« Changing the communication module mode GO command (see Section 4.5.2)

4. ONLINE PROGRAMMING |

47 Displaying the MAIN MENU on the Console Screen (EXIT Command)

This section tells how use the EXIT command to display the MAIN MENU on
the console screen when a PC/AT is used as the console.

When a VG-620 or a VG-382/VT-220 is used as the console, pressing any
key redisplays "S>" after the EXIT command is input.

INPUT PROCEDURE (This command is also referred to as '"E")

[EXiT | Enter |

Command

OPERATION EXAMPLE
Displays the MAIN MENU on the console screen.

Before the command is input

s =3 1] Enter |
Command

U

After the command is input

| (MENU]
[PROGRAMMING]

1: ON-LINE PROGRAMMING
2: OFF-LINE PROGRAMMING

Esc:Close

OPERATING PROCEDURE »
E| [1] [Enter | EI Input the EXIT command to display the MAIN MENU.

S>EXIT

C : :]
(1) BASIC program state when the EXIT command is executed
Even when the EXIT command is executed, BASIC programs in the BASIC task No. areas
will be executed.
(2) Precautions when the command is input

To displ gthe MAIN MENU to edit the BASIC program in a task No. area, stop the BASIC
program before the EXIT command is input

(Execution of the BASIC program can influence the system control)

4. ONLINE PROGRAMMING |

MELSEC-A

IZI Do the corresponding operation after displaying the re-
sult of the execution.

When the display is executed normally, the console
screen enters the following state:

If the display is not executed normally, an error message
_ appears.

(This example'assumes that the display is executed
normally.)

1) When a PC/AT is used as the console:
The console screen displays the MAIN MENU.

| IMENU] Select an operation from the MAIN MENU.
[PROGRAMMING] -
O PO aING ;';)hﬁszvtﬁelﬁzlohls:w HEILEU.Operatmg Manual tells how

2) When a VG-620 or a VT-382/VT-220 is used as the
console:

The console enters the state of waiting for key input.

Press any key to display "S>", and input a system
command.

S>EXIT
[1

Cursor located here

I 1
(2) Communication module mode changes
See the communication module mode change chart in Section 2.3.
(3) Reference
Changing the communication module modec.... GO command (see Section 4.5.2)

4. ONLINE PROGRAMMING

48 Confirming the System Command Input Procedure (HELP Command)

This section tells how to use the HELP command when displaying a command
input procedure to confirm the input procedure. '

INPUT PROCEDURE (This command is also referred to as "H")

[HELP }-! Enter |

Command

OPERATION EXAMPLE

Displays the system command input procedure.

Before the command is input

s . [H{E] P —{ Enter |
Command

U

After the command is input

S>H

(1) CCOPY Memory Card Copy . CC {Source Drive No. :k
, {Destination Drive No.:}

Vi
(2) CFORMAT Memory Card Format CF {Drive No.:}

\\—//\

OPERATING PROCEDURE

[HH{E] P Input the HELP command to display the system com-
mand input procedure.

S>HELP

4. ONLINE PROGRAMMING

MELSEC-A

IZI The result of the execution is displayed.

When the HELP command is executed normally, the
subsequent lines show nine kinds of system command
functions and the input procedure.

S>H

(1) CCOPY Memory Card Copy CC {Source Drive No.:}
. , {Destination Drive No.:}

Vi
(2) CFORMAT Memory Card Format CF {Drive No.:}

___/‘—\

When three kinds of system command functions and the
input procedure (as shown on the next page) are dis-
played, press any key other than the [Esc] key.

Pressing the [Esc] key stops the HELP function.
(Example)

{1) CoPY Memory Card Copy CC {Sourse Drive No.} :
Command Command function {Destination Drive No.} :
(V1
Input procedure explanation
(Command is shown
in its abbreviated form.)

Used for explanatory purposes

If the HELP command is not executed normally, an error ’
message appears.

[:ﬂ "S>" appears after the execution result is displayed.

Input the necessary command.

(1) Display description of a command input procedure
A space after the command requires pressing the [SP] key one time.

Since braces ("{" and "}") are only used to indicate the beginning and end of a command
argument, they don’t need to be actually input.

Since brackets ("[* and *]") are used only to indicate an “omissible part", they don't need to

be-actually input.

4. ONLINE PROGRAMMING

49 Recovering an Unusable Area in the File Area of a Memory Card (CRECOVER
Command)

This section tells how to search and recover an unusable area in the file area
of a memory card in a designated drive.

INPUT PROCEDURE (This command is also referred to as "CR")

CRECOVER H P_}~{ Memory card interface No. }-{ : |- Enter |

Command

OPERATION EXAMPLE

Recovering an unusable file area in the memory card installed in MEMORY CARDJ1].

Before the command is input

L/\, [cHRHEHCcHoHVIH{EHRMSP o]
Command Memory card
interface No.

U

After the command is input

S>CRECOVER 0:
RECOVER (Y/N) ? Y
RECOVER OK

S>

OPERATING PROCEDURE

Lig3 O] | EHR] Input the CRECOVER command to recover a file area

in the memory card.
S>CRECOVER
ClgH IZI Input the interface number of the memory card with the

S CRECOVER 0. file area to be recovered and a colon ().

The numbers that can be input are "0" and "1".

0: Corresponds to MEMORY CARDI[1] of the
AD51H-S3

1: Corresponds to MEMORY CARDJ[2] of the
AD51H-S3

(This example assumes that the memory card installed
in MEMORY CARDI1] is designated.)

4. ONLINE PROGRAMMING
‘ MELSEC-A

P H{Emer]

S$>CRECOVER 0:
RECOVER (Y/N) ?Y

I_?_I The "RECOVER (Y/N)?" dialog box is displéyed.
Press the [Y] key to recover.

Press the [N] key to cancel the recover operation..

- (The console remains in a wait state until a System
command is input.) _

(This example assumes that the recover operation is

executed.)
$>CRECOVER 0:
EsoveR e
s> E The next line displays the result of the execution.

When the command is executed normally, the screen
displays "RECOVER OK".

If the recover operation is not executed normally, an
error message appears.

(This example assumes that the recover operation is
executed normally.)

EI "S>" appears after the execution result is displayed.

Input any necessary command.

4. ONLINE PROGRAMMING : |

MELSEC-A
4.10 Formatting (Logical Format) the File Areaina Memory Card (FFORMAT Command)

This section tells how to format (logical format) the file area in a memory card
installed in MEMORY CARD[1] or MEMORY CARD]|2] of the AD51H-S3.

INPUT PROCEDURE (This command is also referred to as "FFM")

[FFORMAT |+ SP |+{ Memory card interface No. |- : }-{ Enter |

Command

OPERATION EXAMPLE

Formatting the memory card installed in MEMORY CARD[1] of the communication module.

Before the command is input

\s\/’_\‘ FHFHOHRHMHARTH 8P o}]
Command Men‘izr;- card
interface No.

| Enter - Y |-{ Enter |

Execute
formatting

After the command is input

S>FFORMAT 0:
FORMAT (Y/N) 2 Y
FORMAT OK

S>

OPERATING PROCEDURE
O H{R M| Input the FFORMAT command to format the memory

card.

S>FFORMAT

E] Input the interface number which corrésponds to the
[0 - - Enter | memory card to be formatted and a colon (:).

The numbers that can be input are "0" and "1". |

0: Corresponds to MEMORY CARDI[1] of the
AD51H-83.

1: Corresponds to.MEMORY CARDI[2] of the
ADS51H-S3

(This example assumes that the memory card installed
in MEMORY CARDI[1] will be formatted.)

S>FFORMAT 0:

(1) Precautions when using the FFORMAT command.
+ Formatting a memory card deletes all data in that memory card.
« Set the write-protect function for unprotected when formatting a memory card which
has a write-protect function.
 Turn OFF the memory protect keyswitch on the AD51H-S3 when the memory card in-
stalled in MEMORY CARD[1] is to be formatted.

4-37

4. ONLINE PROGRAMMING
MELSEC-A

[Entor [3] The "FORMAT (Y/N)?" dialog box is displayed.
' Press the [Y] key to execute formatting.
Press the [N] key to cancel the format operation.

(This example assumes that the format operation is
executed.) ,

S>FFORMAT 0.
FORMAT (¥¥N) ?Y

E#] The next line displays the result of the execution.

S>FFORMAT 0: When the command is executed normally, the screen
FORMAT (Y/N) 2 Y displays "FORMAT OK".

gORMATOK
> . .

If the recover operation is not executed normally, an
error message appears.

(This example assumes that the format operation is
executed normally.)

EI "S>" appears after the execution result is displayed.
Input any necessary command.

1

(2) Reference
Formatting a memory card({physical format)............... CFORMAT command (Section 4.2.2)

5. MULTITASK DEBUGGING

5. MULTITASK DEBUGGING

Multitask debugging is used to (a) find an error in a program, and (b)'correct
that error during multitasking.

This section tells how to input a debug command from the debugger to debug
all programs when BASIC programs are executed by multitasking.

(1)

(2

(3

Since most of this section concerns key inputting and displays on the debugger, the
explanations assume that all key inputting and displays refer to the debugger.

When key inputting and displays refer to the console rather than the debugger, the word
"console” is always used to avoid misunderstanding.

Executing the operations discussed in this section requires the following preparations:

e Setting the communication module switch to program online see Section 2

e Connecting the debugger ... s censsenscene casecone mre e e 568 S@CtiON 2

e Creating BASIC programs and debugging them.............coeescrereneens see Section 4

® Storing Programs iN MEMOTY ... ses s smssseressssassassos s ease sons soss sens ssrase see Section 4.3.2
® Setting MUIILASKING .ueverceercmriimiiinssnes it tsne s sisecassasssassassnasrrs snns sans snsesasesese ..see Section 4.4.1

Precautions when inputting debug commands

If the debugging system (operating system to analee a debug command and execute it) is
not in-a state to execute an input command, the execution of that command will be
suspended until the debugging enters an executable state.

After displaying "D>" again, input the necessary command.

5-1

5. MULTITASK DEBUGGING

5.1 Debug Commands
Table 5.1 lists the debug commands used for multitask debugging.
Table 5.1 List of Debug Commands
:) ~ Module
- Debu . Reference | Availability
Classification | o oo"td | Function Section |ADSTH|A1SD5
. -S3 1S
» Displays the state of BASIC programs in the
TSTATUS™ des?gn);ted task area. Prog 5.2.1
- Starts executing a BASIC program in the designated
TRUN"1 uprinfuininial prog 9 5.2.2
) TSTOP*1 tSatts:‘i:v:reexaecuting a BASIC program in the designated 5.2.3
Task control - - - o)
: Restarts execution of a stopped BASIC program in the
TCONTINUE™ designated task area. orar 5.2.4
T Displays the value of a designated variable in the 5.2.5
i BASIC program (existing in the designated task area). e
TLET*1 Assigns a value to a designated variable in the BASIC 5.2.6
program (existing in the designated task area). e
-Displays the range of addresses *Bufter
MREAD that can be shared by BASIC eMain memory | 5.3.1
programs. sExtension relay
Writes a value to a designated (EM)
MWRITE address that can be shared by +Extension 5.3.2
BASIC programs. register (ED)
Displays internal device bit data «General-
B@ that can be shared by BASIC purpose input 5.3.3
programs. X
Memory Writes bit data that can be shared eGeneral- o o
access control by BASIC programs to an internal purpose output
: B@ device. (Y) 5.3.4
sExtension
relay (EM)
Displays internal device word data *Extension
we@ that can be shared by BASIC register (ED) 5.3.5
programs.
Wirites word data in that can be
we shared by BASIC programs to an 5.3.6
internal device.
0s Displays the operating states of the event, message 5.4.1
information ZSTATUS port, and source (that can be shared by BASIC 54.2 o o
confirmation programs). 5.4.3
Switch the communication module from the debug
START*1 modedto editing moge (2). : dhg) 5.5.1
(To edit a program during multitasking
Mods control Switch the communication module from the debug ° °
GO mode to the system mode or execution mode (2); or 5.5.2
vice versa.
EXIT Displays the MAIN MENU on the debugger. 5.6
Others HELP Displays the debug command list, functions, and 5.7 o o
command input procedures. .

*{ Cannot be executed with tasks that contain compiled BASIC programs.

o: Available x: Unavailable

5. MULTITASK DEBUGGING

5.2 Controlling BASIC Program Operations

This section tells how to use the debug commands (to control a task) when
controlling BASIC programs.

5.2.1 Dlsplaymg the state of a designated program (T STATUS command)

This operatlon displays the state of a BASIC program in the designated task
_area.

INPUT PROCEDURE (This command is also referred as "TS")

To designate one task area:

[TSTATUS |- SP] Task No. |—{ Enter |

Command

To designate all task areas:

[1sTATUS |{ Enter |

Command

OPERATION EXAMPLE

Displays the status of a BASIC program in the task No.1 area.

Before the command is input

D> (THsHTHAHTHuUuHsHsPH

Command

@ Task No.

After the command is input

D>TSTATUS 1
TASK NO STATUS PRIORITY STEP NO
1 WAIT 1 150

OPERATING PROCEDURE

OHsHTHAMTHUHNS] [1] Input the TSTATUS command to display the state of a
: BASIC program.

D>TSTATUS

5. MULTITASK DEBUGGING

SP 1 Enter

D>TSTATUS 1

D>TSTATUS 1
TASK NO STATUS PRIORITY STEP NO
1 WAIT 1 150

MELSEC-A

Input the task number (AD51H-S3: 1 to 8, A1SD51S: 1,
2) to display the state.

When all task areas are designated, press the [Enter]
key.

(This example assumes that task 1 is designated.)

[3] The execution result is displayed.

When the display is not executed normally, the next line
shows "TSTATUS: Error" accompanied by the error
code.

When the display is executed normally, the contents are
shown below:

(This example assumes that the task No.1 area status
is displayed.)
1) TASK NO : Designated task number

2) STATUS : BASIC program state

DORMANT : Indicates that the printer
has not yet been started
up in the designated area.

RUN : Indicates that a BASIC
program is running.
WAIT :Indicates that a BASIC

program is in a wait state.

: Indicates that a BASIC
program is not being
executed. (*1)

3) PRIORITY: Current priority of a BASIC program.

If the STATUS is DORMANT, "0" is
displayed.

STOP

4) STEP NO : Step number currently being executed.
If the STATUS is STOP, "0" is
displayed.

"D>" appears after the execution result is displayed.

Input the necessary command

*1 If a designated program is stopped by using the
TSTOP debug command, the debugger will be in
the STOP state.

5. MULTITASK DEBUGGING

5.2.2 Starting the execution of a designated BASIC program (TRUN command) |

This operation starts executing a BASIC program in the designated task area.
INPUT PROCEDURE (This command is also referred to as "TR")

[TRUN |- sP | Task No. | Enter |

Command

OPERATION EXAMPLE

Starts executing a BASIC program in the task No.1 area.

Before the command is input

> | (T HAH O H N S HEmw]

Command Task No.

U

After the command is input

D>TRUN

OPERATING PROCEDURE

[T HRHUHN H SP }{ 1 o Enter] Input the TRUN command and task number (AD51H-S3:
1 to 8, A1SD51S: 1, 2) to start executing a BASIC
D>TRUN 1 program.

(This example assumes that task No.1 is designated.)

E] The next line shows the execution result.

When the TRUN command is executed normally, the

D esT oK screen shows "REQUEST OK".

- If the TRUN command is not executed normally, an error
message accompanied by the error code appears.

(This example assumes that the TRUN command is
executed normally.) v

5. MULTITASK DEBUGGING

MELSEC-A

|_3_-:| "D>" appears after the execution result is displayed.
Input the necessary command.

(1

(2

Precautions when inputting a command

elfa task number which corresponds to an area containing a program being executed
is designated, then an error will occur.
If a task number which correspands to an area which contains no BASIC program is

designated, then an error will occur.
Reference

. St %ng the execution of a designated TSTOP g
PPOGIAM cuc ermieescrse cane senscnss sssssssssssasass svsssums sess sses sonsssssanas sons snms suss sass seve on comman
9 (see Section 5.2.3)

5. MULTITASK DEBUGGING

5.2.3 Stopping the execution of a designated BASIC program (TSTOP command)

This operation stops the execution of a designated BASIC program in the
designated task No. area.

INPUT PROCEDURE (This command is also referred to as "TP")

To stop the execution immediately:

[TsToP || SP || Task No. I-{ Enter |

Command :

To stop the execution on a designated line:

[TsTOP F{ SP }{ TaskNo. }{ , | Line number }{ Enter |

Command

OPERATION EXAMPLE

Stops the execution of a designated BASIC program (being executed in the task No.1 area) on line 120.

Before the command is input

D> (THsHTHoHPHSPH 1 M.

Command Task No.

[1H2HOHEnter|

Line number

U

After the command is input

D>TSTOP 1, 120
REQUEST OK

OPERATING PROCEDURE

[THsHTHoHPHsPH 1] El Input the TSTOP command and task number (AD51H-
S3: 1 to 8, A1SD518: 1, 2) to stop the execution of a
D>TSTOP 1 BASIC program.

(This example assumes that task No.1 is designated.)

5. MULTITASK DEBUGGING

0

MELSEC-A

Enter IZJ Input the line number (where the execution will be

stopped) in decimal.

D>TSTOP 1, 120

When the program is stopped immediétely, press the
[Enter] key.

When designating "65535" -or 1" as the line number
before this command is input, the next execution stop
command is canceled. ’

(This example assumes that the execution is stopped on
line 120.)

@ The next line shows the result of the stop command

D>TSTOP 1, 120

REQUEST OK

execution.

When the command is executed normally, the screen
shows "REQUEST OK" along with the following stop
message:

BREAK : Task No.[] Line No.[]

I Line number where the
’ execution is stopped
Task number of the stopped program

When designating "65535" or "-1" as the line number,
giving the TSTOP command normally displays "BREAK
Cancel: Task No.[]".

If the TSTOP command contains an error, an error
message accompanied by the error code appears.

(This example assumes that the TSTOP command is
executed normally.)

When the TSTOP command is executed normally, the
corresponding program enters the STOP state.

Execution of the program can be resumed by giving the
TCONTINUE command.

E "D>" appears after the execution result is displayed.
Input the necessary command.

(1

(2

Precautions when inputting a TSTOP command

e When designating a line number, this number must exist in the program.
Input this number in decimal.
Ifa Iined number that does not exist in the program is input, the program cannot be
stopped. :
In this case, designate "65535" or "~1°, and re-input this command.

® A BASIC program can be stopped only at one position.

e When a BASIC program is stopped, make sure that operation does not also stop the
system control.

References
e Confirming the current BASIC
Program SLARUS.....oceususesrissrsssosscsessars sserasesassasssans TSTATUS command (see Section 5.2.1)
e Retrying execution of a program
from the firSt HNe ...cccvev v ciesvenniienss e cosssssnsss s snen e TRUN command (see Section 5.2.2)
e Resuming the execution from the
interrupted liNecceeceeecmserennvennnnanns TCONTINUE command (see Section 5.2.4)
o Confirming a varable ... e v s s sare e eene T? command (see Section 5.2.5) '
e Assigning a value to a variable........cevcecnenene TLET command (see Section 5.2.6)

5-8

5. MULTITASK DEBUGGING

(8) TSTOP command operations

e Stops the execution of a program at the step preceding the designated line when the
TSTOP command along with a line number is input.

If a TSTOP command without a line number is input, thecrrogram will not be executed.
in this case, after the interpreter completes the command being executed when the
[Enter] key was input, the execution stops.

Therefore, if a line containing several commands (a multistatement) is input, any com-
mands folloc\‘mng the command being executed when the [Enter] key was input will not
be executed.

(4) Precautions when inputting the TSTOP command to stop a BASIC program

* When stopping the execution of a BASIC program, the debug (OS) displays the stop
message on the line where the cursor is located.

If a command is input when the debug displays the stop message, the message and
the input command overlap on the screen.

If this happens, continue inputting, since the input command is valid.
(Example) When the stop message appears during the TSTATUS command input

D>TSTOP 1, 190
REQUEST OK
D>TSTABreak: Task No.1 Line No 00180

Stop message

Command being input

U

D>TSTOP 1, 190

REQUEST OK

D>TSTABreak: Task No.1 Line No 00180
TUSTY

N_/—-//’_\

Command being input

Input the rest of the character string
(Input "TSTATUS 1°, and press the [Enter] key.

(5) How to stop the interpreter operation in the designated task No. area

~® When stopping the interpreter operation in the designated task No. area, create a pro-
gram containing an END command.

5. MULTITASK DEBUGGING

5.2.4 Resuming a stopped BASIC program (TCONTINUE command) -
This operation resumes the execution of the BASIC program (in the desig-
nated task No. area) stopped by the TSTOP command.

INPUT PROCEDURE (This command is also referred to as "TC")

To resume the execution from the step following the last executed line:

| TCONTINUQ—*I SP |{ Task No. 4 Enter |

Command

To resume the execution after a command is stopped:

TCONTINUE |~ SP_}—{ Task No. , Line No. - Enter |

Command

OPERATION EXAMPLE

Resumes execution of a BASIC program (in the task No.1 area) from line 120.

Before the command is input

D>TCONTINUE 1, 120 (THeHoMNHTH I HNHUHMEFR
Command
[sPH 1 M, H 1 H2HoHEnter]
Task No. Line No.
After the command is input
D>TCONTINUE 1, 120
REQUEST OK
D>
OPERATING PROCEDURE
[THeHoHMNHTH T HNE EI Input the TCONTINUE command and a task number
[UME HsPH 1] (AD51H-S3: 1 to 8, A1SD51S: 1, 2) to resume a BASIC
program stopped by the TSTOP command.
D>TCONTINUE 1 (This example assumes that task No.1 is designated.)

5. MULTITASK DEBUGGING

MELSEC-A

L. H 12 Mo HEntr| E] Input the line number (where the execution will be re-

D>TCONTINUE 1, 120

started) in decimal.

If the program is resumed from the step following the
last number already executed, press the [Enter] key.

(This example assumes that line 120 is designated.)

IEI The next line shows the result of the stop command
execution.

D>TCONTINUE 1, 120
REQUEST OK
D>

When the command is executed normally, the screen
shows "TCONTINUE: REQUEST OK".

If the command is not executed normally, "“TCONTINUE:
Error" accompanied by the error code appears.

(This example assumes that the command is executed

normally.)

When the command is executed normally, the corre-
sponding program enters the RUN state.

EI "D>" appears after the execution result is displayed.
Input the necessary command.

M

()

®)

Precautions when inputting a TCONTINUE command

e The TCONTINUE command can only be executed to a BASIC program stopped by the
TSTOP command. -

If the command is executed to a program other rhan the program stopped by the
TSTOP commsnd,an error will occur. R

When the communication module is set to editing mode (2) by designating a task No.
area that contains a stopped BASIC program,this program cannot be resumes using
the TCONTINUE command even if the communication module is returned to the de-
bug mode using the SYSTEM command.

The state of a BASIC program can be confilrmed by using ths TSTATUS command.
Precautions when designating a line number :

® Any designated line number must exist in the program.
Input this number in decimal.

If a line number that does not exist in the program is input,the pprogram will be re-
sumed from the step following the last executed line.

References -
¢ Confirming the current BASIC
program Statuseevisieens eevs oane sana ssna sans sens snes suns TSTATUS command (see Section 5.2.1)
® Stopping the execution of a designated................. TSTOP command (see Section 5.2.3)
BASIC program.
* Resuming the execution from the first line........... TRUN command (see Section 5.2.2)

5. MULTITASK DEBUGGING
=—=MELSEC-A

5.2.5 Displaying the value of a designated variable in a designated BASIC program (T? command)

This procedure displays designated variable values used in the BASIC pro- -
gram stored in designated task No. area.

INPUT PROCEDURE (No command abbreviation)

[T2 {sP |—-| Task No. |{ , |{ Set of variables |-{ Enter |

Command

OPERATION EXAMPLE

To display values of variables A$ and B% used in the BASIC program stored in task No.1 area with which execution
is currently suspended: :

Before the command is input

D>T? 1, A$; B% | THzHsPHOH . HAHMSH : HB %M Enter |

Command Task No. Set of variables

U

After the command is input

D>T? 1, A$; B%
51H=123
D>

/’—\

OPERATING PROCEDURE

THM?MSPH 1 , Input the T? command and a task number (AD51H-S3:
110 8, A1SD51S: 1, 2).

The task number must correspond to the area where a
designated program exists.

(This example assumes that task No.1 is designated.)

D>7T?1,

(s M : HB] | Enter | Izl Input the names of variables whose values are to be
displayed.

Like the PRINT command, the T? command can be used
with a numerical and character string expression.

D>T? 1, AS; B%

By using commas {,) and semicolons (;), several vari-
ables can be displayed. '

(This example assumes that the values of A$ and B%
are displayed.)

5. MULTITASK DEBUGGING

MELSEC-A

El The next line shows the result of the stop command

D>T? 1, A$; B%
51H=123
D>

execution.

When the command is executed normally, the screen
shows "T?:" accompanied by the values of the variables.

if the command is not executed normally, a "T?: Error"
message accompanied by the error code appears..

(This example assumes that the command is executed

normally, which means that A$ and B% store "51H="and
"123" respectively.)

[Zl "D>" appears after the execution result is displayed.

Input the necessary command.

(1)

(2

Precautions when inputting commands
o it a BASIC program (that is set to DORMANT) is designated, then an error will occur.
» Designate the T? command along with its parameters in a line.

The display caused by the T? command can consist of up to 1024 characters.

e Mitsubishi recommends that the BASIC program to be designated should be in the
STOP state when the T? command is input.

References.
. COnflrmlng the current BASIC program

statuscoeueees weemsennene 1O TATUS command (see Section 5.2.1)
. St ping the execution of a deS|gnated

ASIC program... s senneenneens nrennnannennnns 1S TOP command (see Section 5.2.3)

. Resummg the execution of a stopped

BASIC program....... «weee. TCONTINUE command (see Section 5.2.4)
® Assigning a value to a variable...........ccerveernnn TLET command (see Section 5.2.6)

5. MULTITASK DEBUGGING

' 5.2.6 Assigning a value to the designated value in the BASIC program (TLET command)

This operation assigns a value to the designated value in the BASIC program.

INPUT PROCEDURE (This command is also referred to as "TL")

TLET SP 1 TaskNo. - , | Variable Name |+ = || Expression |- Enter |

Command

OPERATION EXAMPLE

To assign values to variables A$ and B% used in the BASIC program stored in a task No. area with which execution
is currently suspended:

Before the command is input
D>TLET 1, A§="12AB" [THtHeEHTHsPH{ 1 . HAMSs}

Command Task No. Variable

|=H_'H1H2HAHB_H'HEnter

Expression

U

After the command is input

D>TLET 1, A$="12AB" [(THLHEHMTHsPH 1t . HBH<%&
OK Command . TaskT. Variable
D>
[= H1H2H3HEnter|
Expression
____//_\

OPERATING PROCEDURE

CCHLHEHMTHsPH 1 M .| Input the TLET command and a task number corre-
sponds to the area where the program ex:sts(AD51H-
D>TLET 1, S3:1to08, A1SD51S: 1, 2).

(This example assumes that task No.1 is designated.)

L?_l Designate the name of the variable to which a value is
assigned.

Like the LET command, the TLET command can be used
with an array variable name (ex. G(0), D$(1%), etc.).

D>TLET 1, A$=

(This example assumes that the character variable A$
is designated.)

5. MULTITASK DEBUGGING

MELSEC-A

" H i1 H2HAaHBH - Henr] EI Input the value to be assigned to the variable.

D>TLET 1, A$="12AB"

Like the LET command, the TLET command can be used
with a mathematical expression or character expres-
sion.

(This example assumes that the character constant of
"12AB" is assigned to the A$ character variable.)

I_T__l The next line shows the execution result.

D>TLET 1, A$="12AB"
oK
D>

When the TLET command is executed normally, the
screen shows "OK". :

If the TLET command is not executed normally, an error
message accompanied by the error code appears.

(This example assumes that the command is executed
normally.)

I_i—l "D>" appears after the execution result is displayed.
Input the necessary command.

[]
(1) Precautions when inputting the TLET command
o If a BASIC program that is set to DORMANT is designated, an error will occur.
e Mitsubishi recommends that the BASIC program to be designated should be in the
STOP state when the TLET command is input.
(2) References
e Confirming the current BASIC
Program StatUS.......eeussioscinesamsunssnssssseenmsssse sonases TSTATUS command (see Section 5.2.1)
. Stogring the execution of a designated
‘BASIC Program......ccu v i sensserssesassssenemsssnssensnenees 19 10P cOmmand (see Section 5.2.3)
e Resuming the execution of a stopped)
BASIC program......cu.eecscsssinccnncsonsansecmsnsense TCONTINUE command (see Section 5.2.4)
e Confirming a variable value..........cceeeuervescnncrnnnrceneee. T? command (see Section 5.2.5)

5-15

5. MULTITASK DEBUGGING

5.3 Reading/Writing from/to the Internal Memory

This section tells how to use debug commands when reading/writing from/to

the internal memory.

— BUIET cuurecvoe venevneemesseee cseecaseesenassssors snessose soms sons boss asessess s

— Common memory
Internal L Extension register (EDO to ED1023).....c.coreccesernens
memory .
(communica—— Extension relay (EDO to EM1023).....ccoccceecererens
tion oo
module)

General-purpose

6K bytes

.......................... ROV - | @ 3" (-1

1024 points (1024 words)
..1024 points (1024 bits)

(X0 10 X1F) covvrrercnsennnssnnnsiaene 32 points (32 bits)
— inputs and outputs L (vg to Y1F)ccoccrernen

.32 points (32 bits)

The MREAD and MWRITE commands discussed in this section need desig-
nated addresses when the internal memory is accessed.

The correspondence of the addresses used with these commands to the
internal memory is shown below:

Access the internal memory within the address ranges.

003_, OH Buffer

17FFH (6K bytes)

1800H

to Common memory

(8K bytes)

37FFH

3800H | £po to ED1023

3FFFH (1024 words)

equal to one byte.

OH
to
BFFH

[Addresses designated when the internal
[__{ memory is accessed from the PC CPU us-
| ing a FROM/TO command.

3800H
3801H

N 3802H
\ 3803H

\ to

N\
\ S3FFEH
N aEFFH

Addresses designated when the internal memory is
accessed using the debug command.
The memory is accessed by treating one address as

2 o
(H)
L
2 e
(H)

to :
L
O ED1023 —
(H

5.l MULTITASK DEBUGGING

MELSEC-A

5.3.1 Displaying values in the buffer, common memory, and extension register ED (MREAD com-
mand)

This procedure displays data stored in a designated memory (buffer, common
memory, or ED).

INPUT PROCEDURE (This command is also referred to as "MR")

To display values in mémory in units of bytes:

[MREAD |+ SP | Head address | , }--| "ol diplay dhta l—-| » 4 B |{Enter]

Command Units of bytes
(can bs omitted)

To display values in memory in units of words:
Number of words
[MREAD H SP H Head address H of display data , w Enter

Command Units of words

OPERATION EXAMPLE

Displays values in extension registers EDO to ED5 in units of words.

Before the command is input_ (MM RHEHMA H HSPH{ 38l {oo}

D> . Command Head address

) 6 , ' W H Enter

Number of Units of words
display words

U

After the command is input

D>MREAD 3800, 6, W
3800 : 0000 0000 0000 0000 0000 0000
D>

OPERATING PROCEDURE

(MMRMEHMAHMDHMSPH 3 | . Input the MREAD command and a head address (with.
[W o Mo H .| which the display begins) using up to four digits in
hexadecimal (0 to 3FFF).

D>MREAD 3800, Section 5.3 gives details about the correspondence of
' addresses to the device memory.

(This example assumes that address 3800H in EDO is
designated.)

When displaying data in units of words, set the first of
the lower digits to a even number.

If the first of the lower digits is an odd number, the data
in the designated address will not be displayed.

(1) Precautions when designating the number of bytes (words) of display data
When designating the number of bytes (words) of display data, the following conditions must
be satisfied:
Address number + Number of display words/Number of display words —1 < 3FFFH

If a Igart of the memory above address 3FFFH is designated, the data in all addresses up
to 3FFFH will be displayed.

5. MULTITASK DEBUGGING _
MELSEC-A

[6 M . H W HEnter] EI Designate the number of bytes (words) of display mem--
- ory and the display type.

D>MREAD 3800, 6, W

When designating "B" (can be omitted) as the display
type, input the number of words of data in the desig-
nated memory range to-be displayed. ’

‘When designating "W" as the display type, mput the
number of bytes of data in the designated memory range
to be displayed.

Input the number of bytes (words) in hexademmal

When designating the number in units of bytes:
1H < (Number of bytes) < 4000H

When designating the number in units of words:
1H < (Number of words) < 2000H

(This example assumes that six words are designated.)

D>MREAD 3800, 6, W E The next line shows the execution result.

3800 : 6000 0000 0000 0000 0000 0000 .

D> When the MREAD command is executed normally, the
data in the designated memory range is set in desig-
nated units.

When units of bytes is displayed, each line shows data

in addresses [J[][10 to [1[][]F (for 16 addresses) as
shown below:

However, if the designated address ends with a number
other than "0 (n)", spaces are placed for that address on
the screen.

unnn-pgoonoonne e oo 00

L Indicates L [Displays data for 16 addresses | [Display characters corre-

the address ! (address by address) in hexa- sponding to each address.
number. decimal, dividing the data into In the case of OH to 1FH, "."
sets of two columns. is displayed.

When displaying data in units of words, each line displays the data for 16
addresses as shown below:

Q000 D000 D000 0000 0000 Qoo te L
|_‘ Indicates Displays data for 16 ad-
the address dresses (address by address)
number. in hexadecimal, dividing the

data into sets of two ad-
dresses.

If the MREAD command is not executed normally, an
error message accompanied by the error code appears.

(This example assumes that the MREAD command is
executed normally.)

[Zl "D>" appears after the execution result is displayed.
Input the necessary command.

5. MULTITASK DEBUGGING

(2)

(3

Operation when more than 16 lines of data is displayed
The screen can display 16 lines of data (max.).

If more than 16 lines of data must be displayed, pressing any key but the [Esc] key displays
the additional data.

Pressmg the [Esc] key clears the display.
References
Writing a value to the designated memory MWRITE command (see Section 5.3.2)

Conflrmlng word lnformahon in extension reglster ED
- ... W@ command (see Section 5.3.5)
Wrmng word mformauon in extenslon reglster ED .. W@ command (see Section 5.3.6)

5-19

5. MULTITASK DEBUGGING

. 5.3.2 Writing values to the buffer, common memory, or extension register (ED) (MWRITE command)

This operation writes values to the buffer, common memory, or extension
register (ED). .

INPUT PROCEDURE (This command is also referred to as "MW")

To write a value to the memory in units of bytes To write a value to the memory in units of words

(one address): (two addresses):

lMWRlTEH SP H Head address H H___H Enter [MWR‘TEHSP H Head address H H w H Entil
Command Units oi bytes Command Umts of words

(can be omitted)

OPERATION EXAMPLE
To write values (0AH, 14H, and 1EH) in word units to EDO to ED2:

Before the command is input

[—/’—\IWWH H!1HMTHEHNSPH3HB8HMOMO

[, M W 4{Enter}-
Write type
@ [o oM oM A Enter|
After the command is input Writes a value to addresses 3800H to 3801H (EDO).
D>MWRITE 3800, W [0 M o M 1 H 4 HEnter}-
3800 : 0000 000A Writes a value to addresses 3802H to 3803H (ED1).
3801 : 0000 0014
3802 : 0000 001E 0 oM 1HE |{Entr}
%803 : 0000 Writes a value to addresses 3804H to 3805H (ED2).
>

Write completed

OPERATING PROCEDURE

MHWHRHM T HTHEHSPK Input the MWRITE command and a memory address
3 8 o (with which the written value begins) using up to four
{s HeHoHoH.] digits in hexadecimal (0 to 3FFF).

Section 5.3 gives details about the correspondence of
the device memory to the addresses.

D>MWRITE 3800,

(This example assumes that address 3800H in EDO is
designated.)

[W] [_2__] Designate the write value type.
D>MWRITE 3800, W | - Designate "B" (can be omitted) as the write value type,

when writing the value in units of bytes.

Designate "W" as the write value type, when writing the
value in units of words.

(This example assumes that the value are written in
units of words.)

5. MULTITASK DEBUGGING

D>MWRITE 3800, W
3800 : 0000

[0 H{ o o A [Enter]

D>MWRITE 3800, W
3800 : 0000 000A

[OHVOH1H4HEnter|

D>MWRITE 3800, W
3800 : 0000 000A
3801 : 0000 0014

[0 oK 1t W E [4Enter]

D>MWRITE 3800, W
3800 : 0000 000A
3801 : 0000 0014

1 3802 : 0000 001E

D>MWRITE 3800, W
3800 : 0000 000A
3801 : 0000 0014
3802 : 0000 CO1E
3803 : 0000

D>

MELSEC-A

El The next line shows the execution result.

When the MWRITE command is executed normally, the
screen shows the designated addresses and their val-
ues as hexadecimal numbers in designated units.

When byte units are designated, the display is as shown
below. :

Input the value to be written using a one- or two-digit
hexadecimal number. (Inputting only significant digits is
valid.)

‘ LI‘[:l,lndicates the address number in hexadecimal

Displays the memory value corresponding to the
address using a hexadecimal number.

Input the value (for one address)

When word units are designated, the display is as
shown below:

Input the value to be written using up to four digits in
hexadecimal.

(Inputting only significant digits is valid.)

E Input the values (for two

address) in hexadecimal.

Displays memory values for two addresses
“using up to four digits in hexadecimal.

Indicates the address number

Values to be dis-

Addresses played or written
nH 34 (H) — [1][2][3}{4]
n+1H 12 (H)

Use the following keys to write values:
[0] to [9], [A] to [F}: Used to input a value
[.]: Used to end the write operation

[\]: Used to move the address back-
wards.

[Enter]: Used for inputting (designated
using the above keys) or when
not changing the current memory
value

If the MWRITE command is not executed normally, an
error message accompanied by the error code appears.

(This example assumes that the value is written to mem-
ory addresses 3800H to 3805H (EDO to ED2).)

5. MULTITASK DEBUGGING

_ MELSEC-A

El "D>" appears aft_er the execution result is displayed.
Input the necessary command.

(n

@

Processing when the device memory range is exceeded

e If a value is written to a device memory above 3FFFH, the MWRITE command is auto-
matically stopped.

References)
e Confirming a value to the designated memory ... MREAD command (see Section 5.3.1)

® Confirming word information in extension register ED
.. W@ command (see Section 5.3.5)

.. W@ command (see Section 5.3.6)

5. MULTITASK DEBUGGING

5.3.3 Displaying general-purpose input (X)/output (Y), or extension relay (EM) bit data (B@ com-
mand)

This operation displays bit data for general-purpose input (X)/output (Y)
devices (used for communicating with a PC CPU), or an extension relay EM
(used for data communications in a BASIC program).

INPUT PROCEDURE (No command abbreviation)
To display bit data for general-purpose input (X)

devices: [B@ H (H X H ., H Head number [|,) Enter
Command Device name v

To display bit data for general-purpose output (Y)

devices: (8@ H CH Y H ., H Fosa oo}, [Enter]

Command Device name

To display bit data for an extension relay EM:

(8@ M (HEM}H . HHea'dnumb.,,

Command Device name

OPERATION EXAMPLE
To display bit data of EM16 to EM47:
Before the command is input

D> (BH@M (MHEMMH HiHeH., +

Command Device name - Head number
(3 H 2 1) HEner]
Number of
display points

After the command is input

D>B@ (EM, 186, 32)

EMO0016 : 00000000-00000000
EM0032 : 00000000-00000000
D>

_/"’—\\

(1) General-purpose |/O devices used for communications between a PC CPU and the commu-
nication module.
Those devices handle (a) bit data between a sequence program in a PC CPU and a BASIC
program in the communication module, and (b) bit data controlled by the operating systems.

5. MULTITASK DEBUGGING

|BH@H(HEHMH,|

1 6)

D>B@ (EM, 16,

3 2) Enter

D>B@ (EM, 16, 32)

D>B@ (EM, 16, 32)
EMO0016 : 00000000-00000000
EMO0032 : 00000000-00000000

MELSEC-A .

input the B@ command and the device name.

Input the device name as shown below:

X : When a general-purpose input is designated
(PC CPU « communication module)

Y : When a general-purpose output is designated
o (PC CPU —» communication module)

EM : When an extension relay is designated

(This example assumes that an extension relay is des-
ignated.) :

Input the head number (with which the bit data display
will begin).

When "X" or "Y" is designated, input the head number
using a one- or two-digit hexadecimal number.

When "EM" is designated, input the head number using
up to four digits in decimal.

X/Y:0to1F, EM: 0 to 1023

(This example assumes that EM16 is designated as the
head number.)

Input the number of display points (bits) corresponding
to the device range to be displayed in decimal or hexa-
decimal.

X/Y: 1(1H) < "Number of display points" 32 < (20H)
EM: 1(1H) < "Number of display points" 1024 < (400H)
(This example assumes that 32 points are designated.)

El The next line shows the execution result.

When the B@ command is executed normally, the

- screen shows bit data in the designated device ranged.

When "X" or "Y" is designafed:

Each line shows bit data of devices [][[10to [][}[IF
for 16 points as shown below:

When "EM" is designated:

Each line shows bit data of devices [muitiple of 16] to
[next multiple of 16] for 16 points as shown below:

"0" and "1" indicate OFF and ON respectively.

However, if the number designated as "X" or "Y" is not
"0"(n), or the number designated as "EM" is not a multi-
ple of 16, spaces are placed in the display columns
corresponding to devices 0 or a multiple of 16 to (des-
ignated number — 1).

L_ll___lLJ_[_]_[_l_LlLLLJ_LJ_Ll

Number Displays bit data for eight Displays bit data for the next
bits from the number eight bits using "0" or "1°.
. shown on the left using
Device name 0" or "1".

5. MULTITASK DEBUGGING

MELSEC-A

If the B@ command is not executed normally, an error
message accompanied by the error code appears.

(This example assumes that the B@ command is exe-
cuted normally.)

E] "D>" appears after the execution result is displayed.
Input the necessary command.

(1

(2

(3

Precautions when designating the number of display points

» When designating the number of display points, the following conditions must be satisfied:
XY coveviiicrnas Number + Number of display points —1 < 1F (H '
[1,7 P Number + Number of display points —1 < 1023

¢ If the designated number is outside the device range, device data will be displayed un-
til the last device number is reached.

Operation for displaying more than 16 lines of data

e The screen can display 16 lines of data (max.).
If more than 16 lines of data must be displayed, pressing any key but the [Esc] key dis-
plays the additional data.

¢ Pressing the [Esc] key clears the display.
Reference
* Writing bit data to extension relay EM....................... B@ command (see Section 5.3.4)

5. MULTITASK DEBUGGING
, MELSEC-A

5.3.4 Writing bit data to general-purpose input signal (X) and extension relay (EM) (B@ command)

This operation writes bit data to general-purpose input signal (X) (output to a
PC CPU) or to extension relay (EM) (used for data communications between
BASIC programs). '

INPUT PROCEDURE (No command abbreviation)

To write bit data to general-purposé signal (X):

I B@ H (H X H , H HsadnumberH) HEnter

Command Device name

To write bit data to extension relay (EM):

|78@ H (H EM H . }-orHead number H) H Enter]

Command Device name
OPERATION EXAMPLE
Writes bit data (0, 1, 1, 0) to devices EMO to EM3.
Before the command is input
D> (BEHe H (HEHMMH ., HoH) HEner|
. Command Device name Head number :

0 HEnter{{ 1 Enter |4 1 H Enter 1 0 [{Enter H:]-{Entexj
— L— — =

O » l Write completed

Written to EM3 (OFF)
L Writtento EM2 (ON)
D>B@ (EM, 0) : Written to EM1 (ON)

EM0000:00

EMO001 : Written to EMO (OFF)
EMO0002 :
EMO0003 :
EMO0004 :

D>

”

After the command is input

[eNoRoNal
O

OPERATING PROCEDURE
EHeH (HEHMH.] Input the B@ command and device name.

D>B@ (EM, Input the device name as shown below:

X : Name when a general-purpoée input signal is
designated (PC CPU « communication module)

EM : Name when an extension relay (EM) is desig-
nated :

(This example assumes that the extension relay (EM) is
designated.) '

L]

(1) General-purpose 1/O devices used for communications between an PC CPU and the
communication module : '

¢ Those devices handle (a) bit data between a sequence program in a PCCPUanda
BASIC program in the communication module, and (b) bit data controlled by the operat-
ing systems.

(2) Precautions when using the B@ command

» To operate the communication module normally, do not write bit data to general-pur-
pose input signal devices X0B to XOF.

5. MULTITASK DEBUGGING

MELSEC-A
[0 H) HEnter] : EI Input the device number with which the write operation
' will begin. '
Eﬂ%ﬁéﬁ%’ c?) - When "X" is designated, input the head number using a

one- or two-digit hexadecimal number.

When "EM" is designated, input the head number using -
up to four digits in decimal.

X:0to1F, EM: 0 to 1023
(This example assumes that EMO is designated.)

The next line shows the execution result.

When the B@ command is executed normally, the
screen shows bit data corresponding to the specification
using "0" and "1". ’

Input the bit data to be written using "0" and "1".

LIC 1+ [10]

L L Number L Displays the bit device using *0" or "1".
Device name

Input the bit device to be written using
"0" or "1,

Use the following keys to write bit data:

[0] : Used to turn OFF the corresponding bit

[1] : Used to turn ON the corresponding bit

[\l : Used to move the corresponding bit backwards
[.1 : Used to end the write operation

If the B@ command is not executed normally, an error
message accompanied by the error code appears.

(This example assumes that the B@ command is exe-
cuted normally.)

"D>" appears after the execution result is displayed.

input the necessary command.

(1) Processing when the device memory range is exceeded

e When the device memory range in which bit data is written is exceeded, the B@ com-
mand is automatically stopped.

(2) Reference
¢ Contirming word data in extension relay (EM) B@ command (see Section 5.3.3)

5-27

5. MULTITASK DEBUGGING
MELSEC-A

5.3.5 Displaying word data in extension register (ED) (W@ command)

This operation displays word devices in extension register (ED) that are used
for data communications between BASIC programs. .

INPUT PROCEDURE (No command abbreviation)

We H (HED N, | Feadnumber 1, H ghumberel L™y 1 Enter

Command Device name

OPERATION EXAMPLE

Displays word data (values) in devices EDO to ED2.

Before the command is input . @ (E D H , H H , H 3 }_.
D> Command Device name Head number Number of
display points

After the @
command is input

D>W@(ED, 0, 3)
EDO0000 : 0000 0000 0000

¥/x

OPERATING PROCEDURE

WHeH (HEHMDH .| Input the W@ command and the internal device name.

D>W@(ED,

Input the head number (with which the word display will
~ begin) using up to four digits (0 to 1023) in decimal.

D>W@(ED, 0, : (This example assumes that EDQ is designated.)

5. MULTITASK DEBUGGING -
. MELSEC-A

3) { Enter El Input the number of display points (words) in decimal.
' ED: 1 < Number of display points < 1024 .

(This example assumes that three points are desig-
nated.)

D>W@(ED, 0, 3) _ EJ The next line shows the execution result.
EDO000O : 6000 0000 0000) _ .
When the W@ command is executed normally, the

screen shows word data corresponding to the desig-
nated range.

Each line shows bit data of devices (a multiple of eight)
to (the next multiple of eight) for 8 points in hexadecimal
as shown below:

However, when the designated number is not a multiple
of eight- (n), spaces are placed in the display columns
corresponding to devices (a multiple of eight) to (desig-
nated number — 1).

ED []I |[IL]: to
Displays the number [Sequentially displays word
1 data for eight points using

U four hexadecimal digits.
If the W@ command is not executed normally, "W@:
Error" accompanied by the error code appears.

(This example assumes that the W@ command is exe-
cuted normally.)

El "D>" appears after the execution result is displayed.
Input the necessary command.

‘ (1) Precautions when designating the number of display points

. }Nhen designating the number of display points, the following condition must be satis-
ied: .
ED: Head number + Number of display points —1 < 1023

U g[t)r;%gaesignated number exceeds ED1023, device data will be displayed up to

(2) Operation when more than 16 lines of data is displayed

e The screen can display 16 lines of data (max.).
If more than 16 lines of data must be displayed, pressing any key but the [Esc] key dis-
plays the additional data.

e Pressing the [Esc] key clears the disblay.
(3) References .
¢ Confirming values in the designated memory (recblires the address specification)
ettt st s s sesssans s sk e s sssssnsr e snns snnesnes nenn e ees MIREAD COMMand (see Section 5.3.1)
: o Writing values to the designated memory (requires the address specification)
SR ——psp—————ON ' |'y) = 1) § RT3 T4 B Tt B TR T R R)
e Writing word data in extension register (ED) W@ command (see Section 5.3.6)

5. MULTITASK DEBUGGING

5.3.6 Writing word data to extension register (ED) (W@ command)

This operation writes word data to extension register (ED) that are used for
data communications between BASIC programs.

INPUT PROCEDURE (No command abbreviation)

I Wm ED H ,b H Head number H) H Enter |

Command Device name

OPERATION EXAMPLE

Writes word data (OAH, 14H, 1EH) to devices EDO to
ED2.

Before the command is input

(WHeH (HEHDH ., H o) HEnterl

Command Device name Head number

D>

0 oM O A [Enter]-

Written to device EDO (addresses 3800H to 3801H)

After the @ [oH ol 1 H 4 4 Enter]

command is input
Written to device ED1 (addresses 3802H to 3803H)

D>W@(ED, 0) [0 0K 1 | E [HEnter}s

EDO000O : 0000 0C0A - -
ED0001 : 0000 0014 Written to device ED2 (addresses 3804H to 3805H)

EDO0002 : 0000 001E -
ED0003 : 0000 . _._— m
D> © Write completed

_/\

OPERATING PROCEDURE

(WHeH (HEHDH .] Input the W@ command and the mternal device ED
name.

D>W@(ED,

(1) Writing to internal devices ED
Word data can be written to internal devices ED using the MWRITE command as well.

5. MULTITASK DEBUGGING '
MELSEC-A

[0 H) HEnter] l @ Input the ED number (with which word data writing
: begins) using up to four digits (0 to 1023) in decimal.

D>W@(ED.0) (This example assumes that EDO is designated.)

D>W@(ED,0) : : @ The next line shows the execution result.
ED000O : 0000

When the W@ command is executed normally, the
screen shows the designated device number and word
data as shown below:

Input word data (to be written) using up to four digits in
hexadecimal.

(It is possible to input only significant digits.)

0 o H oM A HEnter} ED
Input the word data to be

D ED,0 . written in hexadecimal.
EE‘CI)%%)(() : oo())o 000A Displays the corresponding word data
) using up to four digits in hexadecimal.

Displays the number

Displayed word

[Addresses r\/ :Iitrad%ra \tn;rltten
EDnH nH 34 (H) [1[2113]14]
_ l n+1H 12 (H)
o MoK 1t 4 HEnter} -]

Use the following keys to write bit data:
D>W@(ED,0) ~ '
EDO00O : 0000 000A [0] to [9], [A] to [F] : Used to input word data

EDOOO1 : 0000 0014

[\] : Used to move the correspond-
ing number backwards

[.] : Used to end the write operation

[Enter] : Used to input when the above-
mentioned keys are used.
. Used to leave the current data
0 1 E H Enter as it is.

D>WG(ED.O) If the W@ command is not executed normally, an error
> , -
EDO000O : 0000 000A message accompanied by the error code appears.

Egggg;j 8838 gg}é ’ (This example assumes that word data is written to

devices EDO to ED2 (Addresses 3800H to 3805H).)

L.] _ El "D>" appears after the execution result is displayed.

D>W@(ED,0) v ' Input the necessary command.

EDOO0OO : 0000 000A
EDO0O01 : 0000 0014
ED0002 : 0000 001E

ED0003 : 0000
D>

5. MULTITASK DEBUGGING

1

(1)
(2

Operation when the designated number exceeds ED1023 _
o |f the designated number exceeds ED1023, device data will be displayed up to ED1023

References

Confirming values in the designated merhory (requires the address specification)
... MREAD command (see Section 5.3.1)

Writing values to the designated memory {requires the address specification)
... MWRITE command (see Section 5.3.2)

Writing word data to extension register (EM)............... W@ command (see Section 5.3.5)

5. MULTITASK DEBUGGING

5.4 Confirming the State of Events, Message Ports, and Source Numbers

This section tells how to use the commands to confirm the current states of
events, message ports, and source numbers shared by BASIC programs.

5.4.1 Displaying event declaration states (valid/invalid) ZSTATUS command)

This operation dlsplays the current declaration states (valld/mvahd) of events
(shared by BASIC programs) for each event.

INPUT PROCEDURE (This command is also referred to as "ZS")

[ZSTATUSHH{ SP H E | Enter |

Command Designated
event

OPERATION EXAMPLE

Displays the current declaration states
(valid/invalid) for each event.

Before the command is input
D> [ZHsHTHANMTHUN S HspPH E HEnter]

Command Designated
event

After the @
command is input

D>ZSTATUS E
No. END!I ON/OFF No. EN/DI ON/OFF

0 DISABLE OFF 1 DISABLE OFF
3 DISABLE OFF 4 DISABLE OFF
6 DISABLE OFF 7 DISABLE OFF

9 DISABLE OFF 10 DISABLE OFF
12 DISABLE OFF 13 DISABLE OFF
15 DISABLE OFF

OPERATING PROCEDURE

(ZHSsHTHAMTHUHSF II‘ Input the ZSTATUS command and "E" (to designate the
{SPH E HEnter] display data type as an event)

D>ZSTATUS E

(1) How to use events
Events are used with the following commands:
(The AD51H-BASIC Programming Manual (Command) gives details.)

® Defining an event.. wreresissins snns e ssnssensenassmsensiannsnns DEF ZEVENT command
e Declaring an event vahd or |nval|dZEVENT command
® Generating an eventuenn. cerenenneen ZSIGNAL command
e Waiting to generate an event............mnercccivcencssnsvnnen e ZWAIT EVENT command

5. MULTITASK DEBUGGING

MELSEC-A
D>ZSTATUS E E The execution results are displayed.
. FF .
N N O N oaoe orF When the B@ command is executed normally, the next
3 DISABLE OFF 4 DISABLE OFF lines show whether each event (0 to 63) is valid or
6 DISABLE OFF 7 DISABLE OFF inva"d_

9 DISABLE OFF 10 DISABLE OFF
12 DISABLE OFF 13 DISABLE OFF

15 DISABLE OFF The display contents are given in the following table:

EN/DI ON/OFF Meaning

Event (corresponding to the
ENABLE ON number) is already defined and
: declared as valid.

Event (corresponding to the
ENABLE OFF number) is already defined, but not
declared.

i Event {corresponding to the
DISABLE ON number) is already defined and
. declared as invalid.

) Event (corresponding to the
DISABLE OFF number) is not defined.

If the B@ command is not executed normally, an error
message accompanied by the error code appears.

(This example assumes that the B@ command is exe-
cuted normally.) ‘

"D>" appears after the execution result is displayed.
Input the necessary command.

5. MULTITASK DEBUGGING

5.4.2 Displaying the state of a message transmitted to a message port shared by BASIC programs
(ZSTATUS command)

This operation displays the state of transmission of a message at each
message port which is shared by BASIC programs.

INPUT PROCEDURE (This command is also referred to "2S")

’ZSTATUSH SP H H Enter I

Command Designated
. message port

OPERATION EXAMPLE

To display the current state of message
transmission:

Before the command is input

D> (ZHSHTHAHNTHUHS HSPH M H{Enter]

Command Designated
message port

After the {}
command is input

D>ZSTATUS M
Message Port No. PRI/FIFO Length Count

\/—\

OPERATING PROCEDURE

[ZHSHTHAMTHUNS - Input the ZSTATUS command and "M" to display the
' tra issi f .
SN nsmission state of the message port

D>ZSTATUS M

(1) Message transmission via a message port

" Messages can be transmitted/received between BASIC programs by defining the message
port in the BASIC programs.

The AD51H-BASIC Programming Manual (Command) gives details.
All related commands begin with "ZMESSAGE".

5. MULTITASK DEBUGGING

D>ZSTATUS M
Message Port No.

PRI/FIFO Length Count

MELSEC-A

E_—I The execution results are displayed.

When the ZSTATUS command is executed, the next
lines show the transmission states (information about
unreceived messages) for each message port.

The display contents are shown below:

Message Port N

PRI/FLSO

Length

Count

: Message port number defined by

the user.

: Shows the type of corresponding

message port as follows:

PRI : "FIFO" designated when
defining the port.

FIFO : "FIFO" not designated
when defining the port.

: Byte length when defining the

corresponding message port.

: Number of unreceived messages

that were transmitted to the cor-
responding port.

If the ZSTATUS command is not executed normally, the
next line shows an error message along with the error

code.

(This example assumes that the ZSTATUS command is

executed normally.)

"D>" appears after the execution resuit.is displayed.

Input the necessary command.

5. MULTITASK DEBUGGING

5.4.3 Displaying the reserve/release states of source numbers used for exclusive control
(ZSTATUS command)

This operation displays the reserve/release states of source numbers used
for exclusive control of memory and external devices.

INPUT PROCEDURE (This command is also referred to as "ZS")

- [ZSTATUSH{SP { S | Enter]

Command Designated
source number

OPERATION EXAMPLE

Displays the reserve/release state of the current
source number.

Before the command is input

D> LZHSHTHAHNTHUHMS HsPH s HEnter

Command Designated
source number

After the @
command is input

D>ZSTATUS S

Semaphore RESERVE/ Basic
No. RELEASE No.

\;/—\

OPERATING PROCEDURE

(ZHSsH T MAHMTHUHS F Input the ZSTATUS command and "S" to display the
[SP{S HEnter] state of the source number.

D>ZSTATUS S

f) |

(1) Exclusively controlling a source by reserving/releasing its source number

When executing several BASIC programs at the same time, the BASIC programs uses the
following commands exclusively to control the sources,

The AD51H-BASIC Programming Manual (Command) gives details.
Reserving a source number ZRESERVE command
Releasing a source number ZRELEASE command

5. MULTITASK DEBUGGING

MELSEC-A
D>ZSTATUS S , _ E] The execution results are displayed.
Semaphore RESERVE/ Basic .
No. , RELEASE No. When the ZSTATUS command is executed normally, the

next lines show the reserve/release states for source
numbers 0 to 31.

The display contents are shown below:

Semaphore No. : Source number

RESERVE/RELEASE: Indicates the reserve/release
state corresponding to the
source.

RESERVE : Indicates the source is in the re-
serve state.

RELEASE : Indicates the source is in the re-
lease state.

Basic No. area : Corresponding source No.

If the ZSTATUS command is not executed normally, an
error message accompanied by the error code appears.

(This example assumes that the ZSTATUS command is
executed normally.)
E—J "D>" appears after the execution result is displayed.

Input the necessary command.

5. MULTITASK DEBUGGING

55 Changing the Communication Module Mode

This section tells how to use debug commands to change the mode of the
communication module.

7

5.5.1 Setting the communication module to editing mode (2) (START command)

This bperat-ion sets the communication module to the: editing mode to edit
(create, change) another program using the designated task area when
several BASIC programs are executed.

INPUT PROCEDURE (This command is also referred to as "ST")

|_START |~ SP | Task No. | Enter |

Command

OPERATION EXAMPLE

Sets the communication module to editing mode (2) to modify a BASIC program (whose execution is stopped) in the
task No.1 area.

Before the command is input

D> s T A R T | sP M 1 | Enter |

Command Task No.

After the @

command is input

D>START 1

U

When the interpreter was not started, the following mes-
OK sage appears before "OK".
' "AD51H-BASIC ON-LINE PROGRAMMING Ver | I’

5. MULTITASK DEBUGGING

OPERATING PROCEDURE

EHTHAHAHT

.

AD51H-BASIC ON-LINE PROGRAMING Ver|]
&]

- 0

OK

éYSTEM '

S>

Input the START command and a task number (corre-
sponding to the program to be edited) (AD51H-83: 1 to
8, A1SD51S: 1, 2) .

The task number can be omi'ttedv.

When the task number is omitted, the START command
is designated as shown below:

1) When the START command is initially input, the
task number is automatically set to 1.

2) When the START command is not initially input,
the previously-designated task number is used.

(This example assumes that task No.1 is designated.)

The execution results are displayed.

When the START command is executed normally, the
screen shows the display contents indicated on the left.

Thereafter, start editing the BASIC prdgram.

The programming manual tells how to edit a BASIC
program.

If the START command is not executed normally, an
error message accompanied by the error code appears.

The display contents when the interpreter was not
started are shown on the upper left.

The display contents when the interpreter was started
are shown on the lower left.

After completing the BASIC program, do either 1) or 2)-
below when returning the communication module from-
editing mode (2) to the debug mode:

1) Execute the SYSTEM command.

» Stops the BASIC program execution.

o Closes the open files and communications line.
2) Press the [Ctrl] + [D] keys.

) Stops'the BASIC program execution.

o Leaves the open files and communications line
as they are. _

» |f the BASIC program was not modified, the exe-
cution of the program can be resumed using the
TCONTINUE debug command.

When resetting the communication module to
the editing mode, the execution can be resumed
using the CONTINUE command. '

5. MULTITASK DEBUGGING |

(1

(2

(3

(4)

Precautions when using the START command

¢ When a BASIC program is being executed in the task No. area used for editing an-
other program, stop the program using the TSTOP command.

Other BASIC program operations when the START command is executed

e When several BASIC praograms are being executed, even if an edit operation in a task
No. area is started, programs in other task No. areas will continue to be executed.

Necessary measures for changing designated task sizes
® Set the communication module to editing mode (1) and do the following:
1) Return the communication module to the debug mode using the SYSTEM command.

' 2) Stop the BASIC programs in the task No. areas using the TSTOP command so that
the operation does not also stop the system control.

3) Use the GO command to set the communication module to the system mode.

4) Use the TKILL system command to end the interpreter operation in the task No.
areas.

5) Use the START command to set the communication module to editing mode (1).
After giving the START command, change the task size, and edit the program.

Section 2.3 gives the mode change chart.
Reference
e Changing the communication module mode..................GO command (see Section 5.5.2)

5-41

5. MULTITASK DEBUGGING

5.5.2 Setting the communication module to the system mode, execution mode (2), or debug mode
(GO command) ‘

This operation switches the debug mode to the system mode or execution
mode (2), and vice versa.

By setting the communication module to the system mode, it is possible to
give system commands to the console to edit/debug a BASIC program (exists
in a task area)(see Section 4).

(1) When the communication module switches to execution mode (2), set-
ting multitasking starts the execution of a BASIC program.

Returning the communication module to the debug mode restarts the
debug operation. :

Setting multitasking starts the execution of the BASIC program.

The following table gives the relationship between the mode/debug start
specifications (when the GO command is input) and the console/debug-
ger states (after the GO command is input):

Mode Setting sl:)eet::li]fgi csatt?;:i Console State Debug Terminal State’ Remarks
Restarts the debug,
YES clears the display s | «
i contents, and displays etting multitasking
A (to the debug | Clears the display “D>". - reloads the BASIC
(Execution Set to the console used in this state, the debug program to the
Mode (1)) for running the BASIC command can be input. | corresponding task No.
N program area and starts the
: . execution.
(to execution
made (2))
Clears the display The display contents
P Cannot be contents, and displays remains unchanged. Stops the execution of
Programming in . "S>, BASIC programs in the
9 designated
the system mode] : The system commands task No. areas.
can be input.

(1) BASIC program states when the GO command is executed

e When execution mode (1) is designated, if mode switch (1) is set to 0 to 3, the BASIC

program starts in the same way when the communication module starts up.

e When the system mode is designated, the execution of all BASIC programs in the task

No. areas is stopped.

(All BASIC programs but the program in the' DORMANT state enter the STOP state)

Since all task No. areas (in the main memory) conditions are unchanged, the BASIC
programs in the task No. areas remain as they are.

By changing the communication module from the slstem mode to editing mode (1), it
is possible to edit/debug a BASIC program in a task No. area. .

5. MULTITASK DEBUGGING

INPUT PROCEDURE (No command abbreviatio_h)

To reset the communication module to the debug mode:

To set the communication module to execution mode (2):

To set the communication module to the system mode (one of the programming modes):

L 60 {sPH R, D HEntr]

Command Execution mode Start the de-
ugger

GO SP |+ R H Enter |

* Command Execution mode

[_GO_HSP H P [Enter |

Command Programming mode

OPERATION EXAMPLE

Returns the communication module to the debug mode.

Before the command is input

After the
command is input

L/—\' (6 HoHMsPH RH ., M D]
Command Designate the Start the de-
execution mode bugger

U

D>GOR, D '

U

D>

OPERATING PROCEDURE

[G —{ O H{sP]

EI input the GO command to change the communication

module command.
El—

EI Designate the mode.

R . D Enter
Input "R" to set the communication module to execution

D>GOR, D mode (2) or the debug mode.
Input "P" to set the communication module to the system
mode.
When "R" is designated, to return the communication
module from execution mode (2) to the debug mode,
input "D" following the "R".
(This example assumes that the communication module
is returned to the debug mode.)

| - : 1]

(2) Precautions when changing the mode

When swnchlng the communication module from the debug mode to another mode, Mlt-
subishi recommends that the execution of BASIC programs should be stopped (see the

5-43

5. MULTITASK DEBUGGING - .
MELSEC-A

E The result of the GO command execution is displayed.

When the command is executed normally, the screen
shows the following:

If the GO command is not executed normally, an error
message accompanied by the error code appears.

The following example gives the display contents when the GO command is
executed normally:

(1) When returning the communication module to the debug mode:
(On the debugger) (On the console)

D>GOR, D Displays the contents when
the GO command is executed

@ Q [o Input a debug command to

the debugger to start debug-
D> Clears the display contents ging the BASIC program.

« The console can be used for
running a BASIC program.

(Enters the state to wait for a debug (Set to the console used for running
command input) a BASIC program)

(2) When setting the communication module to execution mode (2):

D>GOR : Displays the contents when the
GO command is executed

U U

D>GO R ' Clears the display contents

[Both the debugger and the
console can be used for run-
ning a BASIC program.

(Set to the general-purpose port used (Set to the console used for running
for running a BASIC program) a BASIC program)

(3) When setting the communication module to the system mode:

D>GO P ' Displays the contents when the
: GO command is executed

[« The debugger can be used

for running a BASIC pro-
O { gram. '

: ¢ Input a system command
D>GO P S> l to the console.

Section 4 gives details
about system commands.

(Set to the general-purpose port (Enters the state to wait for a system
used for running a BASIC program) command input)

L |

(3) Communication module mode changes
e Section 2.3 gives the communication module mode change chart.
(4) Reference :
o Displaying the MAIN MENU on the debuggerEXIT command (see Section 5.6)

5. MULTITASK DEBUGGING

5.6 ' Displaying the MAIN MENU on the Debugger (EXIT Command)

This section tells how to use the EXIT command to display the MAIN MENU
(contained in the AD51H-BASIC software package) when a PC/AT is used as
the debugger,

When a VG-620 or a VT-382/VT-220 is used as the debugger, pressing any

key

redisplays "D>" after the EXIT command is input.

INPUT PROCEDURE (This command is also referred to as "E")

[EXIT | Enter |

Command

OPERATION EXAMPLE

Before the command is input

Displays the MAIN MENU on the PC/AT used as the debugger.

After the @
command is input

D> E H X H{ 1 H{ T o Enter |
‘ Command

U

D>EXIT

F12 HELP
[MENU]

[PROGRAMMING]

1. ON-LINE PROGRAMMING

2 OFF-LINE PROGRAMMING
EscClose

OPERATING PROCEDURE

[EH XM 1 H 1 HEnter]

Input the EXIT command to display the MAIN MENU.

D>EXIT

1

(1

(2

BASIC program states when the EXIT command is executed

Even if the EXIT command is executed, execution of BASIC programs in the task No. area
continues.

Precautions when inputting the TSTOP command

When a BASIC program in a task No. area is edited using the menu screens, give the
TSTOP command to stop the execution of the BASIC programs to prevent the system
control from being stopped.

5. MULTITASK DEBUGGING

MELSEC-A

[Zl After the execution result is displayed, do the correspond-
ing operation.

When the EXIT command is executed normally, the
screen shows the following contents:

If the EXIT command is not executed normally, an error
message accompanied by the error code appears.

[When a PC/AT is used] ~ The following display contents appear when the com-
' mand is executed normally:

Fiz_ret 1) When a PC/AT is used as the debugger:
1- ON-LINE PROGRAMMNG ‘ , The MAIN MENU appears on the debugger. Se-

2. OFF-LINE PROGRAMMING

EscClose lect one of the items from the MAIN MENU.

The SW1IX-AD51HPE AD51H-BASIC Operating
Manual gives details about menu-driven opera-

{PROGRAMMING]

tions.
[When a VG-620 or a VT-382/VT-220
is used]
2) When a VG-620 or a VT-382/VT-220 is used as
[Pressing any key | the debugger:
@ _ The debugger enters the state to wait for a key in-

put.

g:E . Pressing any key displays "D>". Input a debug
command.

(3) Communication module mode changes

® Section 2.3 gives the communication module mode change chart.
(4) References

o Stogrlng the execution of a desngnated .
C program... ceareneneeneenns TSTOP command (see Section 5.2.3)

e Changing the communication module mode................. GO command (see Section 5.5.2)

5-46

5. MULTITASK DEBUGGING

5.7 Confirming thé Input Procedure for Debug Commands (HELP Command)

This section tells how to use the HELP command to display on the debugger
the input procedure for debug commands.

INPUT PROCEDURE (This command is also referred to as "H")

[HELP | Enter |

Command

OPERATION EXAMPLE

Displays the input procedure for debug commands.
Before the command is input

U

D>HELP

‘[))\/_\]'HHEHLHPHEMW].

Command

OPERATING PROCEDURE

A HE M T P —Ener |

D>HELP }

Input the HELP command to display the input procedure
for debug commands.

IZI The result of the command execution is displayed.

When the HELP command is executed normally, the
next lines show the types, functions, and input proce-
dure for debug commands.)

(Example) .
(1) Task Status Info. TS {task No.}
Command Command function Describes the input procedure.
(The abbraviation of the
Number used for explanatory purposes command is referrad to)

If the HELP command is not executed normally, the next
line shows an error message.

After displaying the result of the command execution,
"D>" appears.
Input the necessary command.

5. MULTITASK DEBUGGING

(1) Description of the command input procedures

Il:\space (located following a command) for one column indicates pressing the [SP} (space)
ey.

A pair of parentheses "(" and ")" indicates inputting parentheses.

s pair of braces "{" and "}" indicates an argument. However, they do not actually have to
e input.

A pair of brackets ("[* and "]") indicates “"can be omitted". However, they do not actually

have to be input. :

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR

6. CREATING BASIC PROGRAMS USING A GENERAL-PURPOSE EDITOR

This section explains how to create BASIC programs using a general-pur-
pose editor. '

Before using a general-purpose editor, read this section to familiarize
yourself with the restrictions that apply.

When using the SW1IX-ADS1HPE type software package, it is not neces-
sary to read this section.

6.1 Difference between a General-Purpose Editor and the Software Package

The communication module can use BASIC programs created either by us-
ing the SW1IX-AD51HPE type software package or a general-purpose edi-
tor.

The differences between a general-purpose editor and the software pack-
age from the point of view of BASIC program creation are as follows.

General-purpose editor BASIC programs can be edited offline.
Operation can not be checked while creating
a program.

Software package BASIC programs can be created either

offline or online.
In online programming, the program can be
run and the operation checked during editing.

6. CREATING BASIC PROGRAMS USING A

GENERAL-PURPOSE EDITOR MELSEC-A

6.2 Operation Flow when Creating a BASIC Program Using a General-Purpose Editor

The procedure from the creation of a BASIC-program with a general-pur-
pose editor to its execution is presented below.

(1) When using a PC/AT

(a) Select DOS from the basic utility menu.

(b) Start up the general-purpose.. For the method used to start up each
editor. general-purpose editor,see Section 7.4.

c) Create the BASIC programusing the general-purpose editor.

—

(d) Save the BASIC program. Program saving destination and exten-

sion file name:
C:\AD51H\USR\[][][].BAS

—_—

e) Quit the general-purpose editor.

(f) Start up the line number
tool and assign line e Input DRENUM name to assign the

fi bers.
numbers to the program. ine numbers

g) Start up the software package.

—_—

(h) The program is executed using the interpreter and its operation is
checked.

6.3 Items Required for Program Creation

In order to create a program using a general-purpose editor, the editor
software must be procured.
Some representative general-purpose editors are listed below.

e Representative general-pui’pose editors
MIFES from Megasoft

FINAL from ASP
EDLIN from the Microsoft Corporation

For details on how to install the general-purpose editor in your HD,
refer to the instruction manual for the general-purpose editor.

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR

6.4 Starting up the General-Purpose Editor

\

This section explains how to start up the general-purpose editor.
'6.4.1 Starting up MIFES

This is the procedure for starting up MIFES. '
For detailed information on MIFES operations, refer to the MIFES instruc-
tion manual. :

(1) Creating a new program

Input the following at the MS-DOS command line:
MI[Enter] or M| file name [Enter]

If you start up with MI[Enter], input the file name after MIFES has
started up.

The file will be saved under the specified file name.

Specify the storage destination for a PC/AT flle as "C:
\AD51H\USR\USRfile name".

(2) Modifying a program

Input the following at the MS-DOS command line:
MI[Enter] or MI file name [Enter]

If you start up with Mi[Enter], input the file name after MIFES has
started up.
The file will be saved under the selected file name.

6.4.2 Starting up FINAL

This is the procedure for starting up FINAL.
For detailed information on FINAL operations, refer to the FINAL instruc-
tion manual.

(1) Creating a new program

Input the following at the MS-DOS command line:
FE[Enter] or FE file name [Enter]

If you start up with FE[Enter], mput the file name after FINAL has
started up.

The file will be saved under the specmed file name.

Specify the storage destination for a PC/AT file as
"C:\AD51H\USR\file name".

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR

(2) Modifying a program

Input the following at the MS-DOS command line:
FE[Enter] or FE file name [Enter]

If you start up with FE[Enter], input the file name after FINAL has

started up.
The file will be saved under the selected file name.

6.4.3 Starting up EDLIN

This is the procedure for starting up EDLIN.
For detailed information on EDLIN operations, refer to the EDLIN instruc-
tion manual.

(1) Creating a new program

Input the following at the MS-DOS command line:
EDLIN file name [Enter]

The file will be saved under the specified file name..
Specify the storage destination for a PC/AT file as
"C:\AD51H\USR\file name”.

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR

6.5 Notes on Using a General-Purpose Editor

The points that should be observed when using a general-purpose editor
are listed below.

(1

(2)

(3)

(4)

(5)

(6)

Processing at the end of program lines

Always énter CR (&HOD) and LF (&HO0A) at the end of a program line.
(When using a general-purpose editor, these are automatically en-
tered on pressing the Return key and Enter key respectively.)

BASIC program file end processing

Enter EOF (&H1A) at the end of a basic program file.

(When using a general-purpose editor, an EOF code is usually input
automatically.)

Control codes in the program

If control codes are included in the program, it will not operate as a
normal program.

Designation of the PRINT command
The PRINT command can be designated by using the abbreviation
9" but this abbreviation cannot be used with a general-purpose edi-
tor.

Assigning line numbers

Assign line numbers at the head of each line, in ascending order.

Number of characters in one line

The number of characters in one line should not exceed 254.
("One line" means everything up to the end of a line.)

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR

6.6 Assigning Line Numbers with the Line Number Tool

This section explains how to start up the line number tool and lists the
points to note when using it.

The line number tool is included in the SW1 IX ADS51HPE type software
package.

6.6.1 Starting up the line number tool

To assign line numbers to or modify a program created using a general-
purpose editor, the line number tool must be started up.

The following is the entry used to start up the line number tool and a
guide to setting each of the options.

DRENUM [-s XXX] [-t XXX] [-i XXX] [-e XXX] source file name [.BAS]
[output file name]

-8 XXX Input the new starting line number in place of XXX.
If no setting is made, "10" is automatically set.

-t XXX Input the old starting line number in place of XXX.
If no setting is made, the head line number is
automatically set.

-i XXX Input the increment value place of XXX.
If no setting is made, "10" is automatically set.

-e XXX Input the line number for the end of the alteration in place
of XXX.
If no setting is made, the final line is set.

Source file name Specify the BASIC source file name.
If no extension file name is specified, it assumed to be
*.BAS".

Output file name Specify the name of the output file that results after

outputting the line numbers. If no specification is made,
the output file name is generated by changing the source
extension file name to ".BAS". If the main file name of the
output file is specified but the extension file name is not,
it assumed to be ".BAS". The extension file name of the
source file is changed to ".OLD".

POINTI

Always use lower case letters for option settings.
DRENUM f 10 r 100 TEST.BAS

Lower case

6. CREATING BASIC PROGRAMS US.ING A

R LR e MELSEC-A
An example of the flow when line numbers are assigned to a program cre-
ated using a general-purpose editor is presented below.

(a) Create a program using the general-purpose editor. (Program with
no line numbers assigned)

- Source file name: C:\AD51\USR\TEST.BAS
Branch at the ' condition

INPUT "X ="; X

IF X>=0 AND X<=10 GOTO *OK ELSE *ERROR
*OK

PRINT "Within range 0 to 10"

END

*ERROR

PRINT "Qutside range”

END

(b) Save the program
(c) Quit the general-purpose editor.
(d) Check that the program has been created.

(e) Start up the line number tool.
C:\>DRENUM TEST. BAS

C: \>c:

C: \>cd \ad51h\system\drenum TEST. BAS

C:\AD51H\USR>
C:\AD51H\USR>

(f) Completion of line number veevei..... Line number assignment is
assignment completed.
(g) Check the program The source program is
saved with the extension file
name ".OLD".

10 Branch at the ’ condition

20 INPUT "X="; X

30 IF X>=0 AND X<=10 GOTO *OK ELSE *ERROR
40 *OK

50 PRINT "Within range 0 to 10"

60 END

70 *ERROR

80 PRINT "Outside range”"

90 END

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR '

6.6.2 Notes on the line humber tool

The points that should be observed when using the line nunber tool are
listed below.

(1

(2

(3)

4)

Processing of same file numbers

If the source file name and output file name are the same, process-
ing is executed after changing the extension file name of the source
file name to ".OLD". if a file with the extension file name changed to
*.OLD" already exists, it is overwritten.

Number of characters in one line

If the number of characters in a line of the source file, or in a line af-
ter line numbers have been assigned, exceeds 254, an error occurs.

Program syntax errors

If a syntax error occurs, the line number may not be correctly as-
signed to the line in which the error occurred.

Cases where line numbers are not reassigned

Note that line numbers will not be reassigned in the following cases.
(a) Line numbers of other programs

Line number of line from which program execution is to start
when using the CHAIN command

Example:
CHAIN MERGE "0 : A. BAS" 200, ALL, DELETE 500-1000

Not reassigned Reassigned
However, line numbers specified for the DELETE option are reas-
signed.
(b) Line numbers of commands that cannot be used in the program-

Line numbers of AUTO, DELETE, LIST, LLIST, MERGE, RENUM
commands.

Example -
LIST 100

Not reassigned

6. CREATING BASIC PROGRAMS USING A
GENERAL-PURPOSE EDITOR o

(c) Processing in the event of a line number tool error

If processing is forcibly suspended during execution of line num-
ber tocl operations, or if file reading/writing or renaming fails due
to an I/O error, the source file is processed in the following way.

« |f processing has not yet reached the stage of renaming the
file, the source file remains unchanged. :

« If the source file has already been renamed, it remains'as'it. is.
(d) Work files used by the line number tool

The file names shown below are those of files temporarily cre-
ated by the line number tool and should therefore. not be used by

the user.
DRENUM.TMP Work file 1
D_NCHT.TMP Work file 2

7. CREATING BASIC PROGRAMS USING A COMPILER

7. CREATING BASIC PROGRAMS USING A COMPILER

This section explains how to create a BASIC program using a compiler.

When using interpreter BASIC, it is not necessary to read this section.

Use compiler BASIC after reading this section and confirming restricted
items, etc.

7.1 Differences between Compiler BASIC and Interpreter BASIC

" The communication module can use both compiler BASIC and interpreter
.BASIC.

The difference in execution between compiler BASIC and interpreter BA-
SIC is as follows:

Compiler BASIC Translates programming language into machine
language before the program is run, and then a
communication module executes the machine
language program.

Interpreter BASIC Translates programming language into machine
‘ language and runs it at the same time while a
communication module is executing the program.

Neither is objectively better or worse: both have advantages and disadvan-
tages as shown below.

Advantages Disadvantages

« Fast execution . » Debugging is difficult.
Compiler BASIC

+ Many detailed restrictions.

Interpreter BASIC » Debugging is easy. * Slower execution.

Select compiler or interpreter according to the purpose to be fulfilled.

7. CREATING BASIC PROGRAMS USING A COMPILER

7.2 Flow when Creating a Program Using a Compiler
This section how to create a BASIC program, how to transiate it using a
compiler, and how to execute it using a communication module.
1) Start the software package.
Cee i Start the SW1IX-AD51HPE type software package.
2) Create a BASIC program by online programming.

3) Execute it by using an interpreter, and confirm the operation.

............... Confirm whether it operates in the restricted range of
a compiler.

4) Store the program to the hard disk by using the SAVE instruction.

............... Store the program to the C drive of the hard disk
(designated drive number 3).

5) Terminate the software package.

............... The screen returns to the DOS command line.
6) Compiler execution '

............... Input and compile DBC <file name>.

7) Confirm the executable program (~.EXE) file.
CA\AD51HWUSR>DIR/W

............... Confirm whether the ~.EXE file has been created after
executing the compilation.

8) Restart the software package.
............... Start the SW1IX-AD51HPE type software package.

9) Select online programming from the menu and transfer to the system
mode.

10) Use the MSAVE command to save it to the execution area of the
memory card. :

............... MSAVE <task ID>,, file name
11) Use the SET command to change the start condition to START.
............... Change the start condition from BOOT to START.

............... To execute in the programming mode, input GO R[,D].

To execute in the execution mode, set the mode
setting switch 1 to 0 or 1, and reset the communication
module.

7. CREATING BASIC PROGRAMS USING A COMPILER

7.3 Necessary ltems for Compiling

An assembler and a linker are necessary for compiling programs created
by a communication module. But, since they are not included in the SW1IX-
AD51HPE software package, they must be purchased separately.

The recommended assembler and linker are shown below.
« Mitsubishi recommends the following:
Microsoft Macro Assembler Ver.4.0 or 5.1 (supporting AX)
Since linkers are not sold separately, use a linker (Microsoft linker) after
Version 3.5 such as the linker contained in MASM or MS-DOS.
74 Registeririg Assemblers and Linkers to a Hard Disk

This section explains how to register assemblers and linkers to a hard disk.

Only those files (MASM.EXE, LINK.EXE) that are necessary for a compila-
tion by using a communication module are copied.

1) Start
2) Insert the Microsoft MASM assembler disk in drive A.

3) Use the MS-DOS COPY command to copy MASM.EXE to the hard disk.
C:\>COPY A:\MASM.EXE C:\[Enter]

4) After copying is completed, take out the floppy disk, and insert the
MASM utility disk in drive A.

5) Use the MS-DOS COPY command to copy LINK.EXE to the hard disk.
C:\>COPY A:\LINK.EXE C:\[Enter]

6) After copying is completed, take out the floppy disk.

7) Completed

7. CREATING BASIC PROGRAM USING A COMPILER _

7.5 Starting the Compiler

It is necessary to start the compiler to compile a created program. Compila-
tion can be executed by inputting DBC<file name> name on MS-DOS.

How to set the compiler format and the available options are shown below.
DBC [-4] [-v] [-w-] [-d] Source file name [.BAS] [Loading file name.EXE]

Source file name

Loading file name.EXE

BASIC source file name. If an extension has not
been designated, the source file name extension
is considered to be .BAS’. If there is a system
name, designate the system name and file name.

Compiled loading file name. If a file name has
not been designated, the source file name exten-
sion is replaced by ".EXE’, and the file name be-
comes a loading file name.

Designated when using Ver. 4.0. If this has not
been designated, Ver 5.1 is considered to be
used.

States during compiling are fully displayed.
Warnings are not displayed.

A program is compiled to check the following er-
rors when executing an operation. (For debug-

.ging)

* When adding, subtracting, or multiplying an
integer, errors are checked for. If an overflow
is detected, an Overflow error is generated.

¢ When executing an operation, the ranges of
the values of the array’s. subscripts are
checked. If a value is out of range, a Sub-
script out of range error is generated.

However, if this option is designated, the size of
the execution program is enlarged, and the exe-
cution speed decreases.

POINTI

Always use lower case letters for option settings.
DBC -v -w TEST.BAS
1T

Lower case

7. CREATING BASIC PROGRAM USING A COMPILER

The following example shows the flow for compiling (file name:
COMP.EXE) a program (file name: INTER.BAS) created by an interpreter.

1) C:\>DBC -v INTER.BAS COMP.EXE [Enter]
ce.....Stant compilation. Designate -v option.

C:\>c:

C:\>cd\ad51h\usr

2) C:\AD51H\USR>c:\ad51h\system\dbc -Lc:\ad51h\system -v
INTER.BAS COMP.EXE

BASIC COMPILER Ver 1.0
....... Start the compiler.
masm $1.asm;
Microsoft (R) macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All right reserved.

xxxxx Bytes symbol free

0 Warning Errors
0 Severe Errors

3) Link c:\ad51h\system\dbb.obj $1,comp,/map,c:\ad51h\
system\dbc.1ib

....... Start a linker.
Microsoft (R) Segmented-Executable Linker Version 5.01.20
Copyright (C) Microsoft Corp 1984-1988. All rights reserved.
Definitions File[NUL.DEF]:{Enter] '

....... Input the ENTER key.

This is not always displayed.

LINK: warning L4021: no stack segment

....... Ignore this error.

C:\AD51H\USR>

4) CAADSTH\USR> ... Compilation completed.

7 CREATING BASIC PROGRAM USING A COMPILER

76 Precautions when Compiling

(1) Compiling

Always use a Microsoft Macro Assembler when compiling, since pro
grams cannot be compiled by using any other assembler.

(2) Workpiece filed created by the compiler

Since, the following filé names are files created by the BASIC com-
piler, the user cannot utilize them.

$n.ASM assembler source file "n" indicates the numerical.
$n.0OBJ object file ‘
BC.TMP workpiece file

BASIC$$$.INC include file
(8) Errors during compiling

Errors during compiling are stored in the assembler source file
$n.ASM and also displayed on the screen. Confirm errors by referring
to this file.

(4) Program operation confirmation

Before compiling a program, execute it using an interpreter, and con-
firm proper operation. Since programs cannot be edited after compil-
ing, if an error occurs after compiling, that program must be modified
by an interpreter and must be compiled again. :

(5) Errors when the DBC compiler is used

If the DBC compiler is used, LINK: warning L4021:no stack segment
is displayed during the link. However, this message does not create
any difficulty in the operation of a compiled program. Therefore ig-

nore this error.

(6) Variable sizes

The interpreter consumes only a character-string area of the length of
a character and the compller always consumes 256 bytes per vari-
able.

(7) Order in which an expression is executed

To increase execution speed, the compiler optimizes expressions.
Therefore, the priority level of the expression and the combination
rule do not change. However, the order in which itéms in an expres-
sion are executed may not be the same.

For example, in ASC(INKEY$)-ASC(INKEY$)*2, it cannot be judged
which is executed first. If the result of an expression differs from that
of the .interpreter, execute the expression after dividing it and storing
the middle value to the variable.

(8) Integer operation upgrading

If the middle result of an expression is not in the range of an integer
in the addition, subtraction, multiplication, or division of an integer, it
is upgraded automatically to a real number by the interpreter, and the
calculation is executed. However, the operation is executed in the
range of the integer by the compiler. In this case, use the CSNG or
CDBL function to convert an integer value into a real number.

7. CREATING BASIC PROGRAM USING A COMPILER

7.7 Execution Usi'ng a Communication Module

To execute a compiled program using a communication module, the com-
piled program must be registered in the execution area of a memory
card/EEP-ROM. :

The procedure for registration to the execution area of a memory card/EEP-
ROM is shown below. ‘ :

MSAVE <Task lb>[,[V],"< File name>" [,[Location]] or
MSAVE <Task ID>[,V]

Task ID BASIC task ID that is stored in the execution area
AD51H-83: 1to 8
A1SD51S : 1,2

vV - Specify verification. After writing is completed, the

contents of the main memory and the memory card/
EEP-ROM are verified.

"File name" Specify the compiled file name (~.EXE) that is read
to the main memory/EEP-ROM.
Location Specify the position where a task is allocated.

0, 16, 32,...368 (Increased by 16)
If it is abbreviated, the allocation is automatically
executed.

POINTS

s The 'Error: Location’ error, which shows that a location cannot be
allocated, will sometimes occur when MSAVE is executed. When
this happens, either designate a vacant location and execute MSAVE
or set the start conditions of all tasks to OFF and execute MSAVE.

« The 'System: code =824’ error, which shows that there is no work
area, will sometimes occur when MSAVE is executed. When this
haéapens, set the start conditions of all tasks to OFF, and execute
MSAVE of all tasks again.

For instance, when saving a compiled file (example: COMP.EXE) by using
MSAVE to position 32 of task ID 1, the procedure is as follows:

1) SSMSAVE 1,,"3:COMP.EXE",32 [Enter]

....... Saving a file to the execution area of
task 1.
SAVE(Y/N)?Y ... Select Y.
SAVE OK
S> Completed.

2) S>SET 1,START [Enter]

....... Changing the start condition from
'BOOT’ to 'START".

SET OK

S> _
3) S>GO R [Enter] ----.. Transeferring to the execution mode.

7. CREATING BASIC PROGRAM USING A COMPILER

7.8 Instructions and Functions
7.8.1 Compilability of instructions and functions

The compilability of instructions and functions is shown in Table 7.1 below.
o: Compilable |
A: Compilable with restrictions
x: Non-compilable

Table 7.1 Compilability of Instructions and Functions

Inst':r::;i;i);i: sand Conlli|.:iy|abi- Remarks Section
ABS o *
ASC o o
ATN ’ A With restrictions S§7.8.2-1,
AUTO X Non-compilable - §7.8.2-2,
BEEP o .
BINS$ A With restrictions §7.8.2-3,
BSWAP o o
CDBI o *
CDBL o *
CHAIN X Non-compilable ' S7.8.2-4
CHR$ o *
CiDB o : *
CINT o *
CISN o *
CLEAR X Non-compilable 87.8.2-5
CLOSE o *
CLs o *
COM ON/OFF/STOP o *
COMMON X Non-compilable §7.8.2-6
CONSOLE o *
CONT X Non-compilable 87.8.2-7
cos A With restrictions §7.8.2-8
CSNG o *
CSNI A With restrictions §7.8.2-9
CVvD o *
CVDMBF ° *
Ccvi o *
Ccvs o *

*: See Section 11 of AD51H-BASIC (Command) Programming Manual.

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.1 Compilability of Instructions and Functions (continued)

'"sgzﬁg:i’:: :"d c°"|'i‘:23bi' Remarks Section
CVSMBF o *
DATA A With restrictions §7.8.2-10
DATES$ o *
DEFDBL A With restrictions $7.8.2-11
DEF FN A With restrictions | 87.8.2-12
DEFINT A With restrictions 8§7.8.2-13
DEFSNG A With restrictions $7.8.2-14
DEFSTR A .With restrictions §7.8.2-15
DEF ZEVENT o *
DELETE X Non-compilable S7.8.2-16
DIM A With restrictions §7.8.2-17
END o *
EOF o *
ERASE X Non-compilable $7.8.2-18
ERL o -
ERR o *
ERROR o *
EXP A With restrictions §7.8.2-19
FIELD o *
FILES X Non-compilable $7.8.2-20
FIX o *
FOR to NEXT A With restrictions §7.8.2-21
FORMAT o *
FRE A With restrictions §7.8.2-22
GET o *
GETMEM o *
GOSUB RETURN A With restrictions $7.8.2-28
GOTO o *
HEX$ A With restrictions §7.8.2-24
IF GOTO ELSE o *
IF THEN ELSE o *
INKEY$ o *
INPUT A With restrictions §7.8.2-25
INPUTS o *
INPUT# o *
INSTR o *
INT o *

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.1 Compilability of Instructions and Functions (continued)

Instructions and Compilabi-

Remarks : Section

Functions

lity

KEY

o]

KEYLIST

X

Non-compilable

§7.8.2-26

KILL

[o]

LEFTS$

-

LEN

*

LET

*

LFILES

Non-compilable

87.8.2-27

LINE INPUT

With restrictions

§7.8.2-28

LINE INPUT#

*

LIST

Non-compilable

§7.8.2-29

LLIST

Non-compilable

§7.8.2-30

LOAD

Non-compilable

§7.8.2-31

LOC

*

LOCATE

LOF

LOG

With restrictions

LPRINT

LPRINT USING

LSET

MERGE

Non-compilable

MID$ (No.1)

MID$ (No.2)

MKD$

'1_

MKDMBF$

With restrictions

§7.8.2-34

MKI$

MKS$

*

MKSMBF$ -

With restrictions

§7.8.2-35

NAME

NEW

Non-compilable

§7.8.2-36

OCT$

With restrictions

§7.8.2-37

ON COM GOsSUB

With restrictions

§7.8.2-38

ON ERROR GOTO

*

ON GOsuB

-

ON GOTO

»*

OPEN

PCRD

PCWT

7-10

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.1 Compilability of Instructions and Functions (continued)

'"sgﬂggg:;: :"d c°"|'i':2°bi' Remarks Section
PRINT o *
PRINT USING A With restrictions §7.8.2-39
PRINT# - 0 . o . ’
PRINT# USING A With re_striciions $7.8.2-40
PUT 0 *
PUTMEM o *
RDSET A With restrictions §7.8.2-41
READ A With restrictions §7.8.2-42
REM o *
RENUM X Non-compilable S7.8.2-43
RESTORE A With restrictions S7.8.2-44
RESUME A With restrictions §7.8.2-45
RIGHT$ o *
RND 0 ‘ ‘ *
ROT A With restrictions §7.8.2-46
RSET _ o *
RUN (No.1) X Non-compilable §7.8.2-47
RUN (No.2) o *
SAVE X Non-compilable $7.8.2-48
SEARCH o ' *
SGN 0) *
SHA , A With restrictions §7.8.2-49
SHT A With restrictions 87.8.2-50
SIN A With restrictions §7.8.2-51
SPACES$) o ' *
SPC A With restrictions §7.8.2-52
SQR » : A With restrictions §7.8.2-53
STOP A With restrictions §7.8.2-54 -
STR$ o *
STRINGS$ ' B .
SYSTEM X Non-compilable . » §7.8.2-55
SWAP o *
TAB A With restrictions $7.8.2-56
TAN A With restrictions - | s7.8.2-57
TIMES o *
TROFF X Non-compilable §7.8.2-58
TRON X Non-compilable $7.8.2-59

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.1 Compilability of Instructions and Functions (continued)

'"sg::g:i’gz:"d Corr:i;;::abi- ~ Remarks Section
VAL A With restrictions §7.8.2-60
WHILE WEND A ‘With restrictions) §7.8.2-61
WIDTH : 0 : .

WTSET A | With restrictions . | s7.8.2:62
ZBAS o o .
ZCLOSE o .
ZCNTL 0 .
ZEVENT o .
ZIDV o .
ZLDV o _ .
ZMESSAGE o .
ZMESSAGE CLOSE o .
ZMESSAGE GET o ' e
ZMESSAGE KILL 0) .
ZMESSAGE OPEN o -
ZMESSAGE PUT 0 .
ZMOVE 0 o .
ZOoDVv o .
ZOPEN o .
ZRECEIVE 0 .
ZRELEASE o *
ZRESERVE .) .
ZSEND 0 .
ZSIGNAL o .
ZSTART A With restrictions $7.8.2-63
ZURGENCY o ' »
ZWAIT DELAY o ' .
ZWAIT EVENT o R

7. CREATING BASIC PROGRAM USING A COMPILER

~7.8.2 Different instruction and function specifications when using a compiler

When executing an operation using a compiler, the specifications are differ-
ent from the specifications when an interpreter is used.

This section explains these differences. Chapter 11 of AD51H-BASIC (Com-
mand) Programming Manual gives details about the following instructions
and functions. Instructions other than instructions explained in this section
have specifications that are the same as for an interpreter. Therefore, for
those instructions, see the interpreter explanations.

Table 7.2 Different Instruction and Function Specifications when Using a Compiler

Instructions and Different Specifications, Restrictions, and .
No. Functions Precautions Alternative Plans
e When a double precision real number is inciuded |® Enclose the <numeric expression>
in the <numeric expression>, a double precision by using the CSNG function, and
1 ATN . y 9
value is returned. In other cases, a single always make the numerical value
precision value is returned. single precision.

: e The AUTO instruction is unusable.

2 AUTO

e AUTO can be used as a variable name.
e if a value outside the range (-32768 to 65535) is |e Before using the BIN$ function, use

3 BINS designated to the expression, the operation the IF instruction to check the range,

result is the same as when 32767 is designated. and generate an error using the
ERROR instruction.
e The CHAIN instruction is unusable. e Substitute a RUN (No.2) instruction.
e When a compiler is used, a "not support” error * Make sure the RUN (No.2)
occurs. instruction does not have the
following CHAIN instruction function.
* Execution at the place of interruption
by designating a line number:

4 CHAIN Use GETMEM and PUTMEM
instructions to deliver numerical
values between programs, and use
the ON GOTO instruction to execute
a jump to the desired line number
according to its numerical value.

e Variable transfer using the ALL
option:
Use the GETMEM and PUTMEM
instructions to execute the transfer.
e The GLEAR instruction is ignored. s When clearing a variable, use an
5 CLEAR assignment instruction.
e When a compiler is used, it is ignored.
¢ The COMMON instruction is unusable. e Use the GETMEM and PUTMEM
6 COMMON instructions to execute the transfer.
o When a compiler is used, a "not support” error
occurs.

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

Instructions and - Ditferent Specifications, Restrictions, and .
No. * Functions Precautions ’ Alternative Plans
e The CONT instruction is unusable.
7 CONT .
) * When a compiler is used, a "not support” error
occurs.
® When a double precision real number is . e Enclose the <numeric expression> by
included in the <numeric expressions, a using the CSNG function, and always
8 cos - A . :
double precision value is returned. In other make the numerical value single
cases, a single precision value is returned. precision.
e The CSNI instruction does not check overflow. |e Before using the CSNI instruction, use
the IF instruction to check the range,
9 CSN! .
and generate an error using the
ERROR instruction.
e Double quotation marks (") in the DATA ® Use the double quotation marks (")
instruction can be used as the symbols to correctly.
enclose character-string constants.
10 DATA ¢ {f there is no double quotation mark (*) symbol
at both end of a character-string constant, the
range from the head to the (*) symbol, or the
range from the (") symbol to the end of the
character-string constant is considered data.
¢ Definition is executed before execution ® Execute declarations before exgcution
statement. statements.
" DEFDBL ® A variable already declared in DEFINT, * Do not execute re-definitions.
DEFSNG, DEFDBL, and DEFSTR instruction
cannot be declared again to a different type
by using another instruction.
¢ When defining or calling a function, do not put |e Add the type designation.
a blank between FN and the name.
® The type designation must always be added to |® When using other user-defined
the variable in the name, dummy argument, functions, define them before calling
and function definition of the DEFFN them.
12 DEFFN instruction.
e When calling other user-defined functions in
the function definition expression, they must
be defined before they are called.
® Once defined, a user function cannot be
redefined.

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

Instructions and Different Specifications, Restrictions and .

No, Functions Precautions ’ Alternative Plans
Definition is executed before execution Execute declarations before execution
statement. statements.

13 DEFINT A variable already declared in DEFINT, Do not execute re-definitions.
DEFSNG, DEFDBL, and DEFSTR instruction :
cannot be declared again to a different type
by using another instruction.

Definition is executed before execution Execute declarations before execution
statement. statements.
14 DEFSNG A variable already declared in DEFINT, Do not execute re-definitions.
DEFSNG, DEFDBL, and DEFSTR instruction
cannot be declared again to a different type
by using another instruction.
Definition is executed before execution Execute declarations before execution
statement. statements.
15 DEFSTR A variable already declared in DEFINT, Do not execute re-definitions.
DEFSNG, DEFDBL, and DEFSTR instruction
cannot be declared again to a different type
by using another instruction.
The DELETE instruction is unusable.
16 DELETE
DELETE can be used as a variable name.
A variable cannot be used for the numeric Designate the maximum size.
expression that designates the size of an
array by using the DIM instruction.
17 DIM
During execution, array subscript ranges are
not checked. (However, execution of a check
can be designated by using option [-d] for
debugging during compiling.)
The ERASE instruction is ignored. When using this to define a new array,
define the maximum size array and use
18 ERASE the array again.
When executing a compilation, a warning When using this to erase an array,
occurs. delete the ERASE instruction.
When a double precision real number is Enclose the <numeric expression> by
included in the <numeric expression>, a using the CSNG function, and always
19 EXP . " . :
double precision value is returned. In other make the numerical value single
cases, a single precision value is returned. precision.
The FILES instruction is ignored.

20 FILES
When executing a compilation, a warning
occeurs.

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

No.

Instructions and

Functions

Different Specifications, Restrictions, and
Precautions

Alternative Plans

21

FOR ~ NEXT

* FOR and NEXT instructions must always have a
one-to-one correspondence.

® Give the FOR and NEXT instructions
one-to-one correspondence.

22

FRE

.The FRE function always returns to 0.

* When executing a compilation, a warning
occurs.

23

GOSUB -~
RETURN

e "RETURN without GOSUB" is not checked.

e Use a counter to count and check the
GOSUB and RETURN instructions.

24

. HEX$

¢ |f a value outside the range (-32768 to 65535)
is designated to the <numeric expression>, the
operation result is the same as when 32767 is
designated.

* Before using the HEX$ function, use
the IF instruction to check the range,
and generate an error using the
ERROR instruction.

25

INPUT

* When executing an input operation using the

INPUT instruction, this does not have a screen
edit function.

* When a numerical value is input, overflow is not
checked. Therefore, when too large a value is
input, an error will not occur, and it becomes a
negative number.

When the number of items divided by ',

is not the same as the number of variables,
'Redo from start' is displayed, and the INPUT
instruction is executed again.

e Separate it into another task and
execute the input operation using-an
interpreter.

26

KEYLIST

The KEYLIST instruction is ignored.

® When executing a compilation, a warning
oceurs.

27

LFILES

s The LFILES instruction is ignored.

e When executing a compilation, a warning
occurs.

28

LINE INPUT

* When executing an input operation using the
INPUT instruction, this does not have a screen
edit function.

e Process only part of the LINE INPUT
instruction by using another -
interpreter task.

29

LIST

The LIST instruction is unusable.

o LIST can be used as a variable name.

30

LLIST

e The LLIST instruction is unusable.’

o LLIST can be used as a variable name.

31

LOAD

® The LOAD instruction is unusable.

o LOAD can be used as a variable name.

7-16

7. CREATING BASIC PROGRAM USING A COMPILER

m— IELSEC-A

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

instructions and Different Specifications, Restrictions, and .
No. Functions Precautions Atternative Plans
e When a double precision real number is ¢ Enclose the <numeric expression> by
32 LOG included in the <numeric expression>, a using the CSNG function, and always
double precision value is returned. In other make the numerical value single
cases, a single precision value is returned. precision. :
e The MERGE instruction is unusable.
33 | MERGE
» When a compiler is used, a "not support” error
occurs. »
e Only double precision internal representation
IEEE format data is converted. When data of
34 MKDMBF$ other formats is input, it is considered as IEEE
format data and is converted.
e Only double precision internal representation
- IEEE format data is converted. When data of
85 MKSMBF$ other formats is input, it is considered as |EEE
format data and is converted.
e The NEW instruction is unusable.
36 NEW
e NEW can be used as a variable name.
o {f a value outside the range (-32768 to 65535) Before using the OCT$ function, use
37 oCT$ is designated to the <numeric expression>, the | the IF instruction to check the range,
operation result is the same as when 32767 is and generate an error using the
designated. ERROR instruction.
e An interrupt is executed at the head of each Do not describe a multiple statement
38 ON COM GOSUB instruction by the interpreter, but an interrupt on the first line of interruption
is executed at the head of the line by the processing.
compiler.
e One PRINT USING instruction can describe Split display data into several PRINT
39 PRINT USING eight units of display data. USING instructions.
40 PRINT# USING e One PRINT# USING instruction can describe Split display data into several PRINT#
eight units of display data. USING instructions. '
e Array subscripts and bit ranges are not Before using the RDSET function, use
41 RDSET checked. the IF instruction to check the range.
and generate an error using the
ERROR instruction.

7-17

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

Instructions and Different Specifications, Restrictions, and

Functions Precautions Alternative Plans

No.

e Even if the value exceeds the real number * Try not to execute an abnormal read.
maximum value when reading a decimal
constant, an overflow does not occur, and the
real number maximum value is returned.

e Even if the value exceeds the integer
maximum value when reading octal and
hexadecimal constants, an overflow does not
occur, and the integer maximum value is
returned.

42 READ ® When a values defined in the variable types of

the READ and DATA instructions do not
agree, a 'Syntax error’ can occur on the READ
instruction side.

e However, this error does not always occur.
Example:
10 DATA &H000012
20 READ A! 'An error does not occur.
30 DATA &H12X
40 READ A! 'An error occurs.

e When an error occurs, data next to the data
that caused the error is read.

The RENUM instruction is unusable.
43 RENUM

* RENUM can be used as a variable name.

44 RESTORE e Line number 0 is unusable.

e Execution is restarted in a line unit. e Split multiple statements into several
lines.

e When a multiple statement is used, pay

attention to the following:

RESUME:
Execution is restarted from the first number
of the line where it occurred.

RESUME NEXT:
Execution is restarted from the head of the
following line.

RESUME line number:
Execution is restarted from the head
of the designated line.

45 RESUME

* The ROT function does not check an overflow. |* Before using the ROT function, use the

46 ROT IF instruction to cheqk the range, and
- generate an error using the ERROR
instruction.
47 RUN (No.1) e The RUN (No.1) instruction is unusable.

.|® The SAVE instruction is unusabie,
48 SAVE

® SAVE can be used as a variable name.

7. CREATING BASIC PROGRAM USING A COMPILER

MELSEC-A

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

Instructions and Different Specifications, Restrictions, and .
No. Functions Precautions Alternative Plans
* Argument overflows are not checked. ¢ Before using the SHA function, use the
49 SHA IF instruction to check the range, and
] generate an error using the ERROR
instruction.
e Argument overflows are not checked. ¢ Before using the SHT function, use the
50 | SHT IF instruction to check the range, and
generate an error using the ERROR
instruction.
e When a double precision real number is s Enclose the <numeric expression> by
51 SIN included in the <numeric expression>, a using the CSNG function, and always
double precision value is returned. In other make the numerical value single
cases, a single precision value is returned. precision.
e When the SPC function is put at the end of |e Add ';' (semicoion) after the SPC
52 SPC the PRINT instruction, a line feed is function.
’ executed.
. e When a double precision real number is ¢ Enclose the <numeric expression> by
included in the <numeric expression>, a using the CSNG function, and always
53 SQR < e A
double precision value is returned. In other make the numerical value single
cases, a single precision value is returned. precision.
e A STOP instruction terminates a program.
(Operates the same as an END instruction)
54 STOP
* When executing a compilation, a warning
occurs.
e The SYSTEM instruction is unusable.
55 SYSTEM :
e SYSTEM can be used as a variable name.
e When the TAB function is put at the end of e Add';' (semicolon) after the TAB
56 TAB - the PRINT instruction, a line feed is function.
executed.
e When a double precision real number is ¢ Enclose the <numeric expression'> by
57 TAN included in the <numeric expression>, a using the CSNG function, and always
double precision value is returned. In other make_the numerical value single
cases, a single precision value is returned. precision.
e The TROFF instruction cannot be used.
Even when a compilation is executed, errors
58 TROFF are not displayed. Therefore, reliable
operations when a compilation is executed
cannot be guaranteed. .
e The TRON instruction cannot be used. Even
when a compilation is executed, errors are
59 TRON not displayed. Therefore, reliable operations
when a compilation is executed cannot be
guaranteed.

7. CREATING BASIC PROGRAM USING A COMPILER

Table 7.2 Different Instruction and Function Specifications when Using a Compiler (continued)

Instructions and Ditferent Specifications, Restrictions, and .
No. Functions P Precautions Alternative Plans
¢ Double precision values are always returned. e After using the VAL function for
60 VAL : conversion, substitute and use it for
the variable of a necessary type.
e WHILE and WEND instructions must always ¢ Give the WHILE and WEND
61 WHILE ~ WEND have a one-to-one correspondence. instructions one-to-one
correspondence.
e Array subscripts and bit ranges are not ® Before using the WTSET function, use
62 WTSET checked. the IF instruction to check the range,
and generate an error using the
ERROR instruction.
* If the multitask setting of the task designated- |e When restarting a task, designate the
to the <number> is [P, the interpreter program loading file name (~.EXE) of the
is started. If the multitask setting is CP, a compiler program.
compiler program is started.
® The file designated to the <file name> must be
a file (~.EXE) that is created by DBC (the
BASIC compiler), if the task designated to the
63 ZSTART <number> of the ZSTART instruction is
compiler BASIC. I a file other than a file
created by DBC is designated, an error occurs
or the communication module system
malfunctions.
® A task that has been executed one time can be
restarted by designating a file name using the
ZSTART instruction.

APPENDICES

_ MELSEC-A

Appendix 1 Error Messages when Using the Line Number Tool

#
Error Message

Action to Take

Abnormal condition after line number change.

Due to the -S/-e option was designated, the changed line
numbers are no longer in ascending order.
Review the designated option. :

'

Cannot close file.
(File name)

Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

Cannot create output file (output file name).

Review the file name.
Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

Cannot open file.
(File name)

Review the file name.)
Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

Cannot specify output file name with extension
".old". v

Since ".old" cannot be designated, change it to another
extension file name.

"Could not make backup (file name) of source file
(file name).

Review the file name.
Check the relevant drive for the following: no free capacity,

- write protection ON, no disk inserted, faulty drive status, etc.

Drive not ready.

Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

Error in option designation.

Review the designated option.

Failed to delete temporary file.
(File name)

Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

File name/path name is too long.

Review the file name.

File not found. (File name)

Review the file name.

Insufficient memory.

Increase the free area in the memory and try again.

Number of charactgers in one line has exceeded
254. (Number of lines)

Reduce the number of characters in the relevant line to
within 254.

Number of characters in one line has exceeded 254.
(Number of lines)

educe the number of characters in the relevant line to within
254, taking the increase in the number of characters when
the line numbers change into consideration.

Processing terminated.

This message is always preceded by another error
message: follow the corrective action for this other
message. '

Read error. (File name)

Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

Warning: Reference line number cannot be changed.
(Number of lines) :

Occurs when, for example, the line number referred to in
the relevant line does not exist in the source file.
(Line number change processing continues.)

. Review the line number used to reference the relevant line.

Write error. (Filé name)

Check the relevant drive for the following: no free capacity,
write protection ON, no disk inserted, faulty drive status, etc.

APP — 1

APPENDICES

APPENDIX 2 ERROR MESSAGES WHEN COMPILING

This section explains the error messages that can occur during compiling.
Error messages are classified into the following three types:

(1) Fatal error

This error immediately stops compilation.
A fatal error includes errors in connection with files, memory shortage
errors, and errors inside the compiler.

[Sample error display]
FATAL --- file I/0 error

When a fatal error is detected, the compiler immediately stops. Remove
the cause of the error and reexecute the compilation. When a compiler
stops compiling, the "compiler aborted” message is displayed.

(2) Error

This error indicates syntax errors in BASIC programs, violations of
restrictions, and locations that cannot be correctly compiled.

[Sample error display]
;;10 A$=12345
A

---syntax error in string expression
After detecting as many errors as possible, the compiler stops compiling.
Reexecute compilation after removing the error causes and confirming

the operation by using an interpreter. When a compiler stops compiling,
the "compiler aborted” message is displayed. :

(3) Warning

This error message indicates a problem position, which is not actually an
error. A typical warning is the detection of a statement to be ignored by
the compiler.

[Sample error display]
;;10 CLEAR

woot _
When a warning is displayed, the compiler does not stop compiling. All
processing is done until an EXE file is generated (~.EXE). When a
warning is displayed, check the cause. Then, ignore the warning or

modify the program as appropriate, and reexecute compilation. Warning
displays can be cleared by using the [-w-] compiler option.

APP -2

APPENDICES
. MELSEC-A

[Attention]

When an error is detected, the compiler skips data from the error occur-
rence position to the end of the statement. Therefore, a normal position
immediately after an error is sometimes judged to be the error occurrence
position. Or the position immediately after an error occurrence position
sometimes cannot be detected.Therefore, the second error position and
any subsequent ones may not always be correct.

The program line number and the * symbol which are displayed simultane-
ously with an error message indicate the location in the program the
compiler read when the error was detected. The displayed location gener-
ally indicates the location near the error occurrence position. However,
when an error is detected considerably after the compiler read the pro-
gram, the displayed location indicates the location in the program consid-
erably after the position of error occurrence. In order to solve this
problem, if a program contains program lines which contain long compli-
cated formulas and/or multiple statements which make an error difficult to
detect, divide such formulas and lines into short statements.

APP -3

APPENDICES

(1) Fatal error

Error Message

Corrective Actions

can't create output file

An intermediate file $x.ASM (x is a
numerical character) could not be
created in the current directory.

The condition (directory full) in
which a directory cannot be created
is thought to be the cause. Delete
any unnecessary files, and
reexecute compilation.

can't create work file #1

An intermediate file BASIC$3$$.INC
could not be created in the current
directory.

The condition (directory full) in
which a directory cannot be created
is thought to be the cause. Delete
any unnecessary files, and
reexecute compilation.

can't create work file #2

An intermediate file BC.TMP could
not be created in the current
directory.

The condition (directory full) in
which a directory cannot be created
is thought to be the cause. Delete
any unnecessary files, and
reexecute compilation.

compiler stack overflow

The compiler stack area overflowed.

Simplify any complex expressions.
Reduce the number of nesting
times: i.e., FOR ~ NEXT etc.

(If the number of nesting times is
20 to 35, an error occurs.)

date area overflow (65000 bytes)

- The data area necessary for

variables and constants was too
large to be secured

Since, in most cases, an error
occurs because a huge array is
declared, reduce the size of an
array.

evaluation stack overflow

An expression in one statement
was too complicated.

Reduce the complexity of the
expression. For example, substitute
the intermediate value of an
expression for a variable.

An error occurred when accessing
a source file or an intermediate file.

The disk is faulty or is not empty
enough (disk is full). when the disk

oceurs.)

file /O error is full, delete any unnecessary files
and reexecute compilation.
A source program line was too Either it is not a source file stored
line too | long. (If the line consists of 299 by interpreter BASIC of the AD51H-
Iné 100 fong characters or more, an error S3 or a source file has been

damaged. Store it again correctly.

source file "XXXX' not found

The source file designated in the
command line was not found.

Designate a correct source file
name. .

symbol table overflow

The number of variables, labels, or
FN functions was excessive.

(if there are 500 variables that
consist of 9-character names, an
error occurs.)

Change any variables, labels, or FN
functions with long names into
short ones. In addition, delete any
unnecessary variables, labels, or
FN functions.

too many target line numbers

There are a great many target line
numbers referred to in statements
such as GOTO and GOSUB.

Replace such parts with labels or
divide the program.

unexpected end of file in "XXXX*

A source file was interrupted in the
middle of a statement.

Compile it after completing the
program.

'dbb.obj’ not found
'dbe.lib’ not found

A start up module file or library file
were not found.

The two dbb.obj and dbe.lib files

.must exist in a compiler start path

or current directory. Confirm ‘that
these two files exist.
Confirm that these two files exist.

APP — 4

(continued)

APPENDICES

Error Message

Meanings

Corrective Actions

'XXXX' tailed: error level X

An execution error was reported by
the assembler or linker.

Use the assembler or linker manual
to investigate the cause of the error.
[Attention)

When executing a compiler by

using Microsoft Macro Assembler
Ver 4.0, if the [-4] option is not .
designated, this error occurs. -

'XXXX' failed: Exec format error

The contents of the loading file of
the assembler or linker were
damaged.

Reregister the assembler or linker
to the hard disk.

"XXXX' failed: No such file or
directory

The assembler or linker were not
found.

Place an assembler or linker in the
current directory or the directory
set in the environment variable
PATH.

"XXXX' failed: Not enough memory

The assembler and a linker cannot
be started because there is not
enough memory.

Cancel the resident PRINT
commands, etc. of the resident
program. Remove any
unnecessary device drivers. Or,
make the designation of BUFFERS
of CONFIG.SYS small. Taking
these steps will increase the usable
memory .

APP -5

APPENDICES

(2) Error messages

Error Message

Corrective Actions

bad line number XXXXX

Incorrect syntax:
There is a line number outside the
range from 1 to 65529.

Designate the line number in the
range from 1 to 65529.

DEF --- syntax error

‘Incorrect syntax:

There is a syntax error in the
DEFINT, DEFSNG and DEFDBL
and DEFSTR commands.

Madify the program ‘so that it has
correct syntax.

DEF --- what ?

Incorrect syntax:
There is a syntax error in the DEF
command.

Modify the program so that it has
correct syntax.

DIM --- syntax error

Incorrect syntax:
There is a syntax error in the DIM
command.

Modify the program so that it has
correct syntax.

divide by 0

Improper parameter:
There is a division by zero (/, \,
MOD) in the numeric expression.

Modify the program so that it ha
no division by zero. .
[Attention]
The compiler detects only the
cases where a constant is divided
by constant zero. When executing
the program, division by zero is not
detected as an error, and the
maximum numerical value is
returned.
Single precision :
+1.70141E+38
Double precision :
+1.70141183460469D+38

expression too complex

Compiler restrictions:
The numeric expression of a real
number is too much complicated.

Reduce the complexity of the
expression by taking some
measures such as substituting an
intermediate value of an expression
for a variable.

FOR --- syntax error

Incorrect syntax:

« The control variable and a
substitution statement of an initial
value are not found in the
FOR~NEXT command.

« A character-string variable is
used as a control variable by
mistake.

Designate a control variable or an
initial value correctly.

FOR without NEXT

Incorrect syntax:

¢ The NEXT command which
- corresponds to the FOR
command is not found.

+ The FOR commaﬁd and the
NEXT command are not
corresponding correctly.

Modify the program 50 that the FOR
command and the NEXT command
correspond correctly.

GOSUB not found
GOSUB/GOTO not found
GOTO not found

Incorrect syntax:

The GOSUB command or the .
GOTO command is not found in the
ON XX GOSUB command or the
ON XX GOTO command.

Modify the program so that it has
correct syntax.

APP -6

(continued)

APPENDICES

MELSEC-A

Error Message

Corrective Actions

illegal constant

Incorrect syntax:
A character that is not recognized

- as a number is used in the octal

constant and hexadecimal constant.

Modify the program so that it has
correct syntax.

illegal parameter

Improper parameter:
o There is an improper parameter.

e There is a thing other than a
variable or an arrangement name
in the place where a variable or
an arrangement name is needed.

Modify a program by using a proper
parameter. '

index must be 0...32766

Compiler restrictions:

The value that designates the size
of an arrangement in the DIM
command is too large. Or, a
variable or an expression is used to
designate the size.

Reduce the size.
Change the value that designates
the size into a constant.

INPUT ---, or ; not found

Incorrect syntax:

A thing other than ", " or *;" is found
after the INPUT " ay string "
command.

Modify the program so that it has
correct syntax.

LINE INPUT ---’; not found

Incorrect syntax:

A thing other than ", " is found
after the LINE INPUT "ay string”
command.

Modify the program so that it has
correct syntax.

LINE INPUT --- must be string
variable

Incorrect syntax:

A thing other than a character-
string variable is designated to the
string variable in the LINE INPUT
command.

Designate a character-string
variable to the string variable.

line number not found

Incorrect syntax:
There is not a line number in the
source program.

Describe a line number.

line number or label not found

Incorrect syntax:

« There is not a line number or a
label after the GOTO command
or the GOSUB command.

« An improper label name is used
in the THEN, ELSE, RETURN,
RESUME and RESTORE
commands.

» Designate a line number or a
label.

o Designate a correct label name.

line number XXXXX not sequential

Incorrect syntax:
The line number of a source
program is not designated in
ascending order.

Designate the line number in
ascending order.

missing operand

Incorrect syntax:

There is not an argument or an
expression in the place where there
must be an argument or an
expression,

Designate an argument or an
expression.

NEXT without FOR

Incorrect syntax, compiler
restrictions:

The NEXT command without a
corresponding FOR command is
found.

Describe a corresponding FOR
command.

APP -7

(continued)

~ APPENDICES

Error Message

Meanings

Corrective Actions

ON --- line number or label not
found

Incorrect syntax:
There is a syntax error in the row of

line numbers or labels in the ON XX

GOSUB command or the ON XX
GOTO command.

Modify the program so that it has
correct syntax.

ON --- string expressioﬁ not allowed

Incorrect syntax:

A character-string expression is
designated in the ON
<expression> GOSUB command
and the ON <expression> GOTO
command.

Deéignate a numeric expression to
<expression>

OPEN --- file name not found

Incorrect syntax:
There is not a character string of a
file name in the OPEN command.

Designate a correct file name.

OPEN --- INPUT/OUTPUT/APPEND
not found

Incorrect syntax:

There is a thing other than the
INPUT, OUTPUT and APPEND
commands after the OPEN "XXX"
FOR command.

Designate either INPUT, OUTPUT
or APPEND command.

parameter must be numerical
expression

Improper parameter:

There is a thing other than a
numeric expression in the place
where a numeric expression is
necessary.

Designate a numeric expression.

parameter must be string expression

Improper parameter:

There is a thing other than a .
character string in the place where
a character string is necessary.

Designate a character string.

parameter must be variable

Improper parameter:

There is a thing other than a
variable in the place where a
variable is necessary.

Designate a variable.

port number must be constant

Improper parameter:
The port number (%X) must be an
integer constant.

Designate an integer constant.

PRINT USING --- ;' not found

Incorrect syntax:

There is a character that is not ;"
next to the format character string
in the LPRINT and PRINT USING
commands. .

Change the character to *;".

PRINT USING --- format string not
found

Incorrect syntax:

There is a thing other than a format
character string after the USING
command in the LPRINT and the
PRINT USING commands.

Designate a format character string.

PRINT USING --- illegal parameter

Incorrect syntax:

There is a syntax error in the row of
data to display in the LPRINT and
the PRINT USING commands.

(The number of data to display is
restricted to 8 in the compiler.)

Modify the program so that it has
correct syntax.

PRINT USING --- too many
parameters

Compiler restrictions:

The number of data to display is
too large in the LPRINT and the
PRINT USING commands.

(The number of data to display is
restricted to 8 in the compiler.)

Split one PRINT USING command -
to several PRINT USING
commands.

APP -8

(continued)

APPENDICES

" Error Message

Corrective Actions

RESTORE --- line number or label
not found

Incorrect syntax:

- There is a thing other than a line

number or a label after the
RESTORE command.

Designate a line number or a label.

RESUME --- syntax error

Incorrect syntax:
There is a syntax error in the
RESUME command.

Modify the program so that it has
correct syntax.

statement expected

Incorrect syntax:

There is other thing such as a
constant or a symbol, etc. than a
command or a function at the
beginning of a sentence.

Modify the program so that a
command or a function is put at the
beginning of a sentence.

STEP --- string expression not
allowed

Incorrect syntax:

The increment value specified by
the STEP command is a character-
string expression in the FOR-NEXT
command.

Modify the program so that |t has
correct syntax.

string expression not allowed

Improper parameter:
A character-string variable or a
character-string expression is used.

This error occurs when a character-
string variable or a character-string
expression is designated by
mistake to the place where a
numerical value variable or a
numerical expression must be
designated.

Modify the program so that lt has
correct syntax.

string expression too complex

Compiler restrictions:
A character-string expression is too
much complicated.

Reduce the complexity of the
expression by taking some
measures such as substituting an
intermediate value of an expression
for a variable,

subscript out of range

Improper parameter:

e The value of the subscript of an
array is outside the range
specified in the DIM command.

« Dimensionality specified in the
DIM command and the one
actually written in the program
are not the same.

* Modify the program so that the
value of the subscript of an array
is within the range specified in
the DIM command.

e Modify the program so that the
dimensionality specified in the
DIM command and the one
actually written in the program
are the same.

swap type mismatch

Improper parameter:
Types of two variables to be
exchanged are not the same type.

Modify the program so that types of
two variables to be exchanged are
the same.

syntax error

Incorrect syntax:
There is a syntax error in a
command or a function.

Modify the program so that it has
correct syntax.

syntax error --- binary operator

Incorrect syntax:
There is only one term for a binary
operator.

Modify the expression so that it is a
correct expression,

syntax error at end of statement

Incorrect syntax:

There is a reserved word, a symbol,

or an expression, etc. in the place
that should be the statement end.

Modify the program so that it has
correct syntax.

syntax error in expression

Incorrect syntax:
There is a syntax error in the
expression.

Modify the program so that it has
correct syntax.

APP -9

(continued)

APPENDICES

Error Message

Meanings

Corrective Actions

syntax error in function parameter
list

Incorrect syntax:

There is a syntax error in the formal
argument of the FN function in the
DEF FN function.

Modify the program so that it has
correct syntax.

syntax error in parameter

Incorrect syntax:

There is a syntax error in the row of
the arguments of a statement (a
command or a function).

Modify the program so that it has
correct syntax.

syntax error in string expression

Incorrect syntax:

+ There is a syntax error in the
character string expression.

¢ Operators that cannot be used
for character strings are used.

Modify the program by using
operators that can be used for
character strings.

THEN/GOTO not found

Incorrect syntax:

The THEN and GOTO commands
are not found after the conditional
expression in the IF command.

Modify the program by using the
THEN and GOTO commands.

TO --- string expression not allowed

Incorrect syntax:

The end value that is indicated
after the TO command becomes a
character-string expression in the
FOR command.

Designate a numeric expression or
a numerical value variable as the
end value.

TO not found

Incorrect syntax:
The TO command is not found in
the FOR command.

Modify the program by using the TO
command.

type mismatch

Improper parameter:
« The parameter type is not proper.

e A character string is given to a
place where a numerical value is
needed as the argument of a
command or a function. Or a
numerical value is given to a
place where a character string is
needed as the argument of a
command or a function.

Modify the program so that the
parameter type is proper.

WEND without WHILE

Incorrect syntax, compiler
restrictions:

The WEND command without a
corresponding WHILE command is
detected. :

Modify the program so that the
WHILE and the WEND commands
correspond correctly. .

WHILE without WEND

Incorrect syntax: .
the WHILE command without a

_corresponding WEND command is

detected.

Modify the program so that the
WHILE and the WEND commands
correspond correctly.

XXXXX --- file number not found

Incorrect syntax:

There is not a file number in the
statement XXXX. Or there is a thing
other than a numerical value in the
position where there must be a file
number:

Designate a file number.

XXXXX --- name too long

Incorrect syntax:

Name XXXXX of a variable or a FN
function is too long. (A maximum of
15 characters) '

Shorten the name to 15 characters
or less.

APP -10

(continued)

APPENDICES

MELSEC-A

Error Message

Corrective Actions

XXXXX --- ON/OFF/STOP not found

Incorrect syntax:

The ON, OFF and STOP commands

are not found in the statement
XXXXX where they are required.

Designate ON, OFF, and STOP
commands.

XXXX --- redimensioned array

Compiler restrictions:
Array variable XXXXX has more

than one definition. :

Modify the program so that an array
variable is not redefined.

XXXX --- string variable expected

Improper parameter:

There is a thing other than a
character-string variable in the
place where there must be a
character-string variable in the
statement XXXXX.

Designate a character-string
variable.

XXXXX --- undefined function

Incorrect syntax:))
An undefined FN function is called.

Define the function, or designate a
defined function.

XXXXX --- undefined label

Incorrect syntax:

Label XXXXX that does not exist is
referred to in the GOTO and the
GOSUB commands, etc..

Designate an existing label.

XXXXX --- undefined line number

Incorrect syntax:

Line number XXXXX that does not
exist is referred to in the GOTO and
the GOSUB commands, etc..

Designate an existing line number.

XXXXX --- undefined variable

Compiler restrictions:
An undefined variable is referred to.

XXXXX expected
'X' expected

Incorrect syntax:

There are other things than XXXXX
or "X" in the position where there
must be XXXXX or 'X'.

Designate XXXXX or 'X'".

XXXXX not supported

Compiler restrictions:

XXXXX contains a statement (a
command or a function) that cannot
be used by the compiler,

Modify the program so that it does
not contain a command or a
function that cannot be used by the
compiler.

APP — 11

APPENDICES | |

(3) WARNING
Error Message Meanings Corrective Actions
The STOP command is compiled
STOP assumed to be END being assumed as the END
command.

.) The command or the function
XXXXX Ignored ' XXXXX is ignored.

APP —-12

IMPORTANTI

Design the configuration of a system to provide an external protective or safety inter locking
circuit for the PCs.

Under no circumstances will Mitsubishi Electric be liable or responsibl'e for any consequential
damage that may arise as a result of the installation or use of this equipment. ‘

All examples and diagrams shown in this manual are intended only as an aid to understanding
the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual
use of the product based on these illustrative examples. ‘ '

Owing to the very great variety in possible applications of this equipment, you must satisty
yourself as to its suitability for your specific application.

type ADS1H-BASIC (Program edit, Compile)

Programming Manual

MODEL| AD51H-P(PR,CMP)-E

MODEL 13JF44

IB(NA)66568-A(9506)MEE

2% MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-0005 TELEX : J24532 CABLE MELCO TOKYO
NAGOYA WORKS : 1-14 , YADA-MINAMI 5 , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of International Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	REVISIONS
	INTRODUCTON
	CONTENTS
	1. GENERAL DESCRIPTION
	2. STARTING UP THE COMMUNICATION MODULE AND MODE CHANGE
	2.1 Using a PC/AT and a General-Purpose Terminal as the Console (Display Terminal) and the Debugger
	2.1.1 Preparations required to start up the communication module
	2.1.2 Starting up the communication module

	2.2 Startup when Using Two General-Purpose Terminals as the Console and the Debugger
	2.2.1 Preparations required to start up the communication module
	2.2.2 Starting up the communication module

	2.3 Communication Module Mode and Mode Change

	3. COMMAND EXPLANATION FORMAT
	4. ONLINE PROGRAMMING
	4.1 System Commands
	4.2 Copying/Deleting Data From a Memory Card
	4.2.1 Copying data from a memory card and writing that data to another memory card (CCOPY command)
	4.2.2 Formatting a memory card (CFORMAT command)
	4.2.3 Displaying memory card format information (CFORMAT? command)

	4.3 Writing/Reading an Execution Program
	4.3.1 Reading an execution program stored in a memory card/EEP-ROM using the communication module (MLOAD command)
	4.3.2 Writing an execution program (stored in the communication module) to a memory card/EEP-ROM (MSAVE command)

	4.4 Setting/Changing/Displaying Multitasking Descriptions
	4.4.1 Setting/Changing the multitask (SET command)
	4.4.2 Displaying the multitask setting description (SET? command)

	4.5 Changing the Communication Module Mode
	4.5.1 Setting the communication module to the editing mode (1) (START command)
	4.5.2 Setting the communication module to the execution/system mode (GO command)

	4.6 Stopping the Interpreter Operation in a Designated Task No. Area (TKILL Command)
	4.7 Displaying the MAIN MENU on the Console Screen (EXIT Command)
	4.8 Confirming the System Command Input Procedure (HELP Command)
	4.9 Recovering an Unusable Area in the File Area of a Memory Card (CRECOVER Command)
	4.10 Formatting (Logical Format) the File Area in a Memory Card (FFORMAT Command)

	5. MULTITASK DEBUGGING
	5.1 Debug Commands
	5.2 Controlling BASIC Program Operations
	5.2.1 Displaying the state of a designated program (TSTATUS command)
	5.2.2 Starting the execution of a designated BASIC program (TRUN command)
	5.2.3 Stopping the execution of a designated BASIC program (TSTOP command)
	5.2.4 Resuming a stopped BASIC program (TCONTINUE command)
	5.2.5 Displaying the value of a designated variable in a designated BASIC program (T? command)
	5.2.6 Assigning a value to the designated value in the BASIC program (TLET command)

	5.3 Reading/Writing from/to the Internal Memory
	5.3.1 Displaying values in the buffer, common memory, and extension register ED (MREAD command)
	5.3.2 Writing values to the buffer, common memory, or extension register (ED) (MWRITE) command)
	5.3.3 Displaying general-purpose input (X)/output (Y), or extension relay (EM) bit data (B@ command)
	5.3.4 Writing bit data to general-purpose input signal (X) and extension relay (EM) (B@ command)
	5.3.5 Displaying word data in extension register (ED) (W@ command)
	5.3.6 Writing word data to extension register (ED) (W@ command)

	5.4 Confirming the State of Events, Message Ports, and Source Numbers
	5.4.1 Displaying event declaration states (valid/invalid) (ZSTATUS command)
	5.4.2 Displaying the state of a message transmitted to a message port shared by BASIC programs (ZSTATUS command)
	5.4.3 Displaying the reverse/release states of source numbers used for exclusive control (ZSTATUS command)

	5.5 Changing the Communication Module Mode
	5.5.1 Setting the communication module to editing mode (2) (START command)
	5.5.2 Setting the communication module to the system mode, execution mode (2), or debug mode (GO command)

	5.6 Displaying the MAIN MENU on the Debugger (EXIT Command)
	5.7 Confirming the Input Procedure for Debug Commands (HELP Command)

	6. CREATING BASIC PROGRAMS USING A GENERAL-PURPOSE EDITOR
	6.1 Difference between a General-Purpose Editor and the Software Package
	6.2 Operation Flow when Creating a BASIC Program Using a General-Purpose Editor
	6.3 Items Required for Program Creation
	6.4 Starting up the General-Purpose Editor
	6.4.1 Starting up MIFES
	6.4.2 Starting up FINAL
	6.4.3 Starting up EDLIN

	6.5 Notes on Using a General-Purpose Editor
	6.6 Assigning Line Numbers with the Line Number Tool
	6.6.1 Starting up the line number tool
	6.6.2 Notes on the line number tool

	7. CREATING BASIC PROGRAMS USING A COMPILER
	7.1 Differences between Compiler BASIC and Interpreter BASIC
	7.2 Flow when Creating a Program Using a Compiler
	7.3 Necessary Items for Compiling
	7.4 Registering Assemblers and Linkers to a Hard Disk
	7.5 Starting the Compiler
	7.6 Precautions when Compiling
	7.7 Execution Using a Communication Module
	7.8 Instructions and Functions
	7.8.1 Compilability of instructions and functions
	7.8.2 Different instruction and function specifications when using a compiler

	APPENDICES
	APPENDIX 1 ERROR MESSAGES WHEN USING THE LINE NUMBER TOOL
	APPENDIX 2 ERROR MESSAGES WHEN COMPILING

